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PREFACE

The subjects discussed in this review cover Guidance,

Control, Unsteady Aerodynamics, Structural Dy-

namics, Orbit Theory and Prediction, and selected

topics concerning Astrophysics. Other subjects such

as Aerothermodynamics and Flight Evaluation will be

discussed in forthcoming reviews. It is hoped that

these reviews will be interesting and helpful to other

organizations engaged in space flight research and
related efforts. Criticisms of this review and discus-

sions concerning individual papers with respective
authors are invited.

E. D. Geissler

Director, Aero-Astrodynamics Laboratory
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STUDIES IN MINL'YIAX CONTROL

by

 65-24126

Kenneth J. Davis

David A. Ford

SUMMARY Symbol Definition

t_

This report presents anewformulation of a mini-

max problem in launch booster control, and a summary ozw
of work done by contractors on the problem. The
minimax problem described in the introduction is a E n

mathematical one whose solution would yield a control-

ler which would minimize the maximum possible value F (x)

of some selected analytical index of booster perfor-

mance. The work summarized was completed before C(u)

June i, 1964, and includes studies by Honeywell (Con-

tract NASw-563)and Control Research Associates l.u.b.

(CRA, Contract NAS8-11143). Honeywell's study re-
sults in a linear fixed gain controller which minimizes g.I.b.

a given criterion under a worst-disturbance condition.

CRA has developed a general theory of minimax ele- x _ X
ments, and has defined aproblem whose solution would 2

yield a closed loop controller. _/_i",_J [. u. b. g(x)
xEX

LIST OF SYMBOLS

Symbol Definition

X n-dimensional state vector

Engine swivel angle

Angle of attack due to wind

n-dimensional Euclidean space

performance index

"Cost" functional

Least upper bound

Greatest lower bound

x is a member of the set X

Least upper bound of the values g(x)

of the function g for x belonging to the
set X.

I. INTRODUCTION

A

B,C

u =_u(x)

g '_ g(t)

L,

U

F

T

(g

Z

Xo

Constant nxn matrix

Constant n-dimensional vectors

Scalar control Iaw

'Scalar disturbance function

Class of control laws u(x)

Class of proper control laws

Range of control law u(x)

Class of disturbance functions g (t)

Terminal time

Angle of attack

Angular deviation from reference

Lateral deviation (drift) from reference

Set of controllable initial states

This reportrecords results thus far on a minimF "x
d-

problem related to launch booster control. The mo

ration for the problem is the reduction of peak va'; ues
of some selected index of vehicle performance, cnne

at the same time maintaining other vehicle perf °rra-

ance characteristics within prescribed bounds.

In sectiontwo of this report, a mathematic al for-

mulation of the minimaxproblem is given. Thi: _ prob-
lem statement involves a linear plant, with t time-

varying disturbance entering as a forcing tern L The
bounds on performance characteristics are ir c°rp°-

rated as state variable constraints. The obje( _tive is
the determination of a control law whichwill .mmize

mt.form_
the maximum value of a given (nonintegral) pel
ance index. The maximum is taken relativ_ to a

particular set of initial conditions and a .icular
part finite

class of disturbances, as well as over a given
time interval.

#

Since this type of problem differs from the usual

variational problems, and does not yield readily t°

standard techniques, the statement is given in terms

which emphasize the qualitative aspects of the problem.

.)
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While.the ultimate goal is the development of effective

procedures for computing the optimal control, the

immediate goal is to obtain mathematical insight into

the nature of the problem. Consequently, the problem

is stated in general mathematical terms so that it may

be amenable to rigorous mathematical treatment.

Section three is a summary of work done under

contract by Honeywell, Inc. In this study the case of

a general linear plant with a linear controller and a

bounded disturbance is considered. Honeywell imposes

zero initial conditions and no intermediate or terminal

conditions. A linear performance index is treated,

and a procedure is developed for finding the maximum

value of this cost index for a given linear controller.

In addition, Honeywell applied their technique to two

second-order and one fourth-order (rigid launch ve-

hicle) example.

The results obtained by Control Research Associ-

ates (CRA) are summarized in section four. In con-

trast to the M-H approach, their efforts have been

directed toward the more qualitative aspects of the

problem. In particular, they have made a study of the

general theory of minimax elements. Their most sig-

nificant contribution has been in the formulatlon of a

meaningful mathematical statement of the problem.

II. THE PROBLEM STATEMENT

The terms in which the problem will be stated are
A as follows. The unforced b)oster dynamics are repre-

J N sented by a homogeneous linear vector matrix differ-

" _.ential equation

x_A x, (2.1)

'k
whei_e x is an n-dimensional state vector, and A is an

n x n_matrix. The control process for the whole first

stage _light will be thought of as being made up of a

sequenA_e of shorter processes, each T seconds in

length, _here the time interval 0 -< t - T is sufficiently

small to_ allow the coefficients in the matrix A to be

considered constant throughout the interval. The con-

troller e_ters the system as a scalar u. A scalar g is

introduce_iinto the system to represent wind effects in

the boost'$r, where mathematically g = g(t) is re-

stricted tb a suitable class of functions F. With these

additions z, the system (2.1) is rewritten as

l x=Ax+ Bu+ C g, (2.2)

where B and C are constant n-vectors.

To _'larify the terminology used above, the rigid

body bomter dynamics will be transformed to the form

(2.2). The standard rigid body equations of motion

can be written as

_=_+&
W

l

-_ (Ki (P +K2a +K3fi )

3 = K (_ + _c).

i

(The first equation is the resuttofcombining _ - _w-

- 7,'/V and "Z" = Kl9 + K2a ÷ K3fl ). This system is

transformed into the "state variable" form (2.2) by

letting x 1 = _, x 2 = @, x 3 = c_, x¢ = /3, u = flcand

g = o_w. In vector matrix notation the rigid body

equations become

xl

x 2

x 3
_5

V V V

0 0 0 K

'0

0

g.

/Xl' tO!

x__ O I

+ U+

x 3 01 1

kx+ yJ 0

linear controlGenerally, at MSFC the law is

_x4_

u = fl.c= ao(p+ al<P + boa or u = ktx 1+ k 2x 2+k 3x 3 and

g = a w corresponds to the MSFC desig-n winds (Cape

Kennedy). Here, however, the control u is not re-

stricted to be a linear control law; inde.ed, it may be

of nonlinear form such as the optimal bang-bang con-

trol law. The control u may depend explicitly on time

t or the state vector x. Preferably, however, the

control takes the form u(x) of a feedback control law.

The range of u is restricted to a bounded set U, and

the class of admissible controllers for the problem is

denoted by ,ft. In some studies concerning the rigid

body problem mentioned above, the class of controls

might be the set of all linear controls•

To assure adequate booster performs_ace, the

state vector x is constrained to lie in a region R in

E n. The characteristics of the region R depend upon

the particular system under investigation. For ex-

ample, it may be necessary to restrict linear" combi-

nations of the state variables x so that desirable

booster performance can be obtained. Thes.e combi-

nations can be written a's the dot product II . x, and

the restrictions can be represented by inequalities in

the following general form:

I ii" xl-< L. , i = i, 2 .... , r (2.3)
1

where the L i are positive constants. To illustrate this

formulation, consider the booster rigid-body example

and the restrictionof maintaining the bending moments

on the booster within the structural design limits.



This can be written in the form (2.3) by

1
Ill X3+14 X4 I--< L I,

where _ = M s, 14 M_, and L 1 is the structural de"
sign limit for the bending moments. These restric-
tions, along with others imposed by the physical

situation such as limit on engine deflection angle fl and

perhaps a limit on attitude angle _, determine the

region R.

t,_. • ,Aminimaxproblem is now formulated in n_s set- _,P "

ting. A non-negative functional

F (xI, x2..... Xn) = F (x)

is introduced as an index of performance. The "cost"

for a given control u is then defined by

C (u) = max max max F(x(t; u, g, x°)).

g_F x°eX ° t-<0-<T
(2.4)

Continuing with the general formulation of the

problem, it is assumed that a set X ° of initial states

exists having the property that there is a control u in
p. such that for each initial state x°_ X °, and each

disturbance g • F, the solution x(t; u, g, x °) to equa-

tion (2) (which is initially x(0; u, g, x °) = x °) re-

mains in R throughout the time interval 0 -< t - T.
The set X ° is called the set of controllable initial

states. To state this in terms of the booster rigid

body system, consider the initial states for the state
variables ¢, _, _, _ for any interval of flight time

(e. g., 60-70 sec. ). The initial states are such that,

for any wind the vehicle encounters, there exists a
control u which will maintain the state variables so as

to satisfy all restrictions imposed on them.

Once a controllable set X ° is given, it is neces-

sary to consider, within the set _ of allowable con-

trois, only those which control the vehicle from each

initial state in X °, and for each disturbance g • F.

Let _ denote this subset of P.defined mathematically

as follows: u E_ iffor eachx ° •X °, and eachg E F,

x(t; u, g, x°) remains inR for 0-< t-< T. The mem-

bers of gzwill be called proper controls.

A second condition on x, and on the initialregion

X °, stems from the fact that the terminal state

x(T; u, g, x°) is an initialsta_ for the controller in

the next time period. Thus, it is required that

x(T; u, g, x°) belong to the set of controllableinitial

states for the succeeding time period. This amounts

to placing terminal conditions on the problem. (The

requirement for the terminal conditionson the problem

is a result of the approach to the formulation of the

problem. The choice was eitherto consider the prob-

lem from a time-varying standpoint or to use a con-

stant parameter (time-invariant) formulation. The

latter approach was chosen because of the apparent

simplicity in the formulation and traotabilityof the
P;ruutem I . Since ,u .... 1 1_ is f,_'rn,,lnf_C| for the

constant coefficient case, the flight region must be

broken up into segments in which the parameters are
almost constant. It is therefore understandable that

the controllable initial states for one segment must be

the terminal conditions for the preceding segment.

The expression C (u) is a general mathematical

representation of apeak value of some vehicle param-

eter. For example, C (u) could be taken as the peak
bending moment under a worst-case wind, for a worst

initial condition. Since the object of the minimax con-
trotler is the reduction of this peak, the minimax

problem is that of finding a controller tr'." such that

C (tr*)= min C (u).
u¢_

The controller u* would therefore guarantee the peak

bending moment to be the smallest value found, within

limitations, for any control u which could be con-
sidered. The choice of a functional F would generally

depend on the constraints placed on x. For example,

F(x) = max[l i" xl,

l_<i_<r

where the l i /are the constant vectors of expression

(2.3). Another possibility would be /

/: 2 I xl,
i= 1 /

t

g

which would minimize an "average" worst caae.
f

I

The problem will now be summarize_. For a

particular time interval of length T, the [nolion is

described by the system

:Ax+Bu+Cg.

For this time interval, we seek a controll
such that

(1) u* forcesthe system to remain in R
out the flight time for all disturbances g •
initial states x° • X °,

_ru* •_

hrough-
and all

/

\
\

\

\,

\
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(2).each of the possible terminal states for the

_ime" interval under consideration is a controllable

initial state for the next time period,

q
w

(3) u_:_ minimizes the maximum value of a given

function F (x).

The desired controller for the entire flight time will

be the combination of the controllers for the particular

intervals.

TII. HONEYWELL'S STUDY

Honeywell considers the minimax problem for the

case of a linear feedback control, zero initialcondi-

tions, no state variable constraints, and bounded dis-

turbance. It is shown that, for a given fixed-gain

linear control law, the "worst" disturbance, that is,

the one which maximizes the peak value of a given

(linear) performance index is bang-bang. The per-

formance index chosen has the form

F (x) : I_" xl,

where _ is a constant n-vector. Honeywell develops

a procedure for determining the worst disturbance and

for computing the cost incurred under this disturbance.

They thenfind the minimum cost by using an iteration

procedure. They also present examples to illustrate

. their techniques. The remainder of this section is

'_'_ devoted to summarizing their work.

_._ _ The class of controls _ consists of fixed gain

° _ar control laws in the form

kixi, (3i)

of propel: controls is all of f2 in this case, since

"' "neither c_straints nor terminal conditions are pres-

ent. The class of disturbances F consists of all meas-

urable functions g res_'icted by Igl-< i. Only the case

of zero ilitialconditions x ° = 0, is treated. (Honey-

{ well has :_ported recently that the mathematical dif-

ficulties }hichimposed the zero initial condition have
i

been ove_ome. )

Sind the control u depends only on the state vari-

able, x,mbstitution of a given control law in equation

(2.2) esults in a right-hand side which depends only

4

on x a_d g. Considering g as the control, the prob-

lem of maximizing a performance index isanoptimal

control problem. This modified system has the form

_=/_x+Cg (3.2)

where

,_ =A+Bk T

and k T denotes the transpose of the nxl matrix (vec-

tor) whose components are the gains k l, k 2.... , k n

of (3. i).

The performance index whose maximum value is

to be minimized is represented in the form

F(x):l*- xl.

In accordance with the terminology of section 2, the

cost for a given control u is given by

C (u) = max max I_ • x (t; u(x), g, 0)[ (3.3)

g_F 0-t-T

or more simply,

C (u) = max max

g_F 0-<t-<T

]l • x (t; u, g)]. (3.4)

In the report, two useful simplifications of the

expression for C (u) are made possible because of the

restrictions on x° mid on g. Since only zero initial

conditions are considered, itis found that no generality

is lost in assuming .that max Ii • x (t; u, g) I always

0<_t_<T

occurs at the final time T. "Furthermore, since g (t)

is coD_fined to a symmetric region, it is sufficient to

consider the case where i • x (t; u, g) is non-nega-

tive, and consequently, the absolute values in (3.4)

may be dropped. Therefore,

C (u) = max [l • x (T; u, g)],

geF

which is the final expression for the "cost. "

(3.5)

The main contribution of Honeywell is in the de-

termination of a "worst" disturbance _, that is, one

whicl] satisfies

m

C (u) =_ • x (T; u, g). (3.6)

The central idea, as suggested above, is that of

letting the disturbance g in equation (3.2) take the

role of a control, and applying the theory of time-

optimal control to yield a bang-bang "controller"

5



, which maximizes the performance index

I • x (T;u, g)

of (3.6).

The solution of this problem leads to the con-

struction of 7in the following form. Let y (t) denote

the solution to the system

y _ y  3.7)

with terminal condition

y (T) =1.

Then, in terms of this solution,

(t) = sgn [y (t) • C]

is the desired "worst" disturbance.

In review, it should be pointed out that the above

results apply to the zero initial condition case.

In some cases the cost C (u) is expressible ex-

plicitly interms of the gains k i, k 2..... kn, in which

case one may attempt to find the control u(x] which

minimizes C (u) by analytical techniques. In their

report, Honeywell develops such a procedure for the
plants x = u + g and _ + x = u + g, where the terminal
time T is taken at + _.

A more usual situation is that the cost is not ob-

tainable explicitly in terms of the gains, but rather a

selection of apparently suitable control laws is made,

and the cost computed for each. The selected controI

law yielding the least cost is then chosen as the opti-

nmm control law. This approach is used by Honey-
well in the example discussed in the following para-

graphs.

This example was chosen by the contractor to

illustrate the developed techniques for a more or less

realistic approximation to the problem of rigid body
control of a typical launch vehicle. The conventional

rigid body equations of motion were used in conjunc-

tion with a control law having fixed gains in the pitch

rate feedback loop and in the ptieh attitude and normal

acceleration filtered feedback loops. The rigid body

equations of motion were written in the form of (2),
With state variabies

x, : _, x2 : ,_, xa = _, x4 =/_.

Cost indices of the form

C.t (u) -- max ri (xi (T; u, g)), i= 1, 2, 3, 4
g

6

were considered where the weighting factors r i were.
chosento permit comparison of the peak values of the

state variables. For each control u, the largest ,,f

the values C i (u) was taken as the cost C (u). The

cost was computed for an initialchoice of gains, a::d
an iterative procedure for improving the choice was

implemented which subsequently reduced the initial

cost by 25 percent. The closed loop roots of the opti-
mally controlled system were -. 0047, -. 44, and -. 137

+j (1. 126). The computer time involved was approxi-

mately two hours on Honeywell's H-800 digitai com-

puter. Transient responses for the extremal distur-

bances producing the minimum of the C i (u) are given
in Figures 3 through 6.

IV. CRA'S WORK

This section summarizes work done by CRA on

the minimax problem during February, March, and

April, 1964. The initial interest of the contractors has

been in the mathematical theory upon which the prob-

lem is based. Accordingly, the earlier reports con-

tain a survey of minimax elements in general. Included
in this is a discussion of topological results which are

associated with the problem. At this point, the most

sig-nificant contribution of CRA has been the mathe-
matical formulation of the problem. The formulation

conceived is a considerable improvement over earlier

statements of the problem.

Some of the general theory presented follows.

LetX andY be spaces and let F be amapping of X x Y
into abounded set S of the real numbers. The authors /

of the known result /present a proof
/

I'

> /

g.l.b. [1. u.b. F(x,y)]- /
yeY xeX (4.'1)

1. u.b. [g.l.b. F (x, y)] •
x _X y _Y

Briefly, this says that the minimax is at least as large

as the max-min. It is also pointed out that, m_der the

above nonrestrictive conditions, it is possible to ob-

tain a very good approximation of the minimax solu-

tion. In particular, it is proved that, if _ is any

positive number, then there exists a point (x o, Yo) in
X x Y such that i

I

IF (x o, yO)_g.l.b. 1. u.b. F (x,y) t < e. ' (4.2)
l

y eY x _X l
I

To see the significance of this result, we note_that, in
the case whe,re the minimax exists, we have

k
q

g.l.b. 1. u.b. F(x,y) =min max F (x, y). \

yEY xcX yE¥ x_X _

f

\



7hh_, thi's' tl_e'oren_ _ys that, even if the minimax

does not exist, we are assured of an approximation of

the desired value to within any specified degree of

accuracy.

By placing restrictions onthe spaces X and Y and

on the function F, a more precise theorem is proved

concerning the existence of a minimax solution.

• The contractors introduced two new concL:pt-_
which are defined below.

Definition 1. The system (4.3) is said to be T-

tame with respect to R if there exists a subregi(,n

RTCR such that, for any x°e R T and any g e F, there
exists a controlu • P_ such thatx(t; u, g, x °)•R fo:-

all t such that 0 -< t -< T (Fig. l).

Theorem. If each of X and Y is a sequentially

compact metric space and F is a continuous real

valued function defined on X x Y, then there exists a

point (x °, y°)_X x Y such that

F (x °, yO) =min max F (x, y).

xeX y eY

This theorem is actually proved as a corollary to a

more general theorem involving semicontinuity and

general topological spaces•

Turning to the minimax problem in control theory,

the contractors considered the system

= f (x, u, g), (4.37

where f is an n-vector function and x, u and g areas

given in section II. The region R is assumed to be of
the form ]lxll -< r

where

x (t3)
x(t2)

FIGURE 1, ILLUSTRATION OF T-TAME

The system indicated in Figure I is tl-tame but

it is not t2-tame or t3-tame. A typical trajectory is

shown in Figure 1.

Definition 2. The system (4.37 is said to be uni-

formly TStame with respect to R if there exists a

subregion RTCR and a nonvacuous subclass ,Is of o
such that x(t; u, g, x°)eR whenever x ° • RT, g • F,

u • 'P and t • [ 0, T]. The idea "of T-tameness seems

to be of significant importance. When working with a

system which is uniformly T-tame, we are assured
of the existence of a "controllable set" of initial states

and at least one controller which will insure adequate

booster performance against all admissible winds.

Without this property, we would be in the umlesirable

position of having our controller u (x) depend explic-

itly on the wind.

Example:

The system

X I = X 2

£z=u+g

with[u] -< 1, [g[ -< 1, andT= 2sec, is uniformlyT-

tame with respect to the region R, defined by

[xl] -_<2

[x2[ < 2.

R T may be taken to consist of the strip in R between
the linesx+2y= 2 andx+2y=-2. Any initialstate

inR T maybe controlled for any g (satisfying [gl -_ I)

by taking u = - sgn x2 (Fig. 2).

d ,X 2

R

FIGURE 2. REGIONS R AND R T FOR EXAMPLE



The assumptionthatoursystembeuniformly_r-
tamewith respectto R is fundamentalin theworkof
CRA. Theseconceptshavebeenusefulto thecontract
monitorsin preparingthenewproblemstatement.In
fact, theRT in thedefinitionsabovecanbe identified
with theX° of theproblemstatement. Furthermore,
the statementthat the system(4.3) is T-tame is
equivalentto the assumptionmadein the problem
statementthatan"adequate"controllerdoesexist.

The last progressreport from CRAincludeda-
discussionof theexpression"uniformlyT-tame." It
containedanexplanationof thesignificanceof theterm
andof itsrelationshiptothe(nonuniform)T-tameness

C ONC LUSIONS

The introduction of this report provides a com-

pletestatement ofa minimax problem in launch booster

control. Two aspects of this essentiallynew formu-

lation should be pointed out. First,•there is not a

particularindex of performance which may be singled

out as the index of performance for the problem. The

second point is that the problem includes terminal

constraints on x.
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FIGURE 3. RESPONSE TO EXTREMAL

DISTURBANCE WHICH MAXIMIZES x 1

The most useful form for_the ' ' '' 'controller j_ ti_c

u (x) form. Honeywell's study chooses this type ,,f
controller, and carries their technique tlu:ough to a

computational algorithm. One shortcoming of thi:_

scheme is that the only constraint which they place _,n
their state variable is the undesirable one of zer,_

initial state. Another drawback of Honeywell's pr,J-

cedure is that, in most cases, the optimum u (x) is
one of a preselected set of control laws rather than a

control law derived from the process. That is, the

only thing which they provide is the determination of

the worst-case cost for a given controller. Their ap-

proach has been applied successfully to in-house

studies involving equations for a rigid booster with a

first order actuator lag, where the maximum bending
moment is to be minimized. A report will be written
on this work in the near future.

The work of CRA has centered around obtaining a

sound formulation of the problem. Their work contri-

buted heavily to the essentially new statement of the

problem given in the introduction to this report.
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A BOUNDARY*VALUE FORMULATION FOR SPACE

VEHIC LE GUIDANCE

By

SUMMARY

Robert Silber

is slightly more involved. For purposes of this treat-

meat, we shall take the former viewpoint.

Part 1 of this two-part paper presents a discus-

sion of the general notion of guidance of space vehicles,

the purpose of which is to arrive at an understanding

and description of the decision process which is

central to the steering of a space vehicle. In many
cases, the decision process can be embodied in a set

of mathematical functions, called control laws. The

second part of the paper is concerned with the numeri-

cal representation of the control laws. One way in

which this may be accomplished, with the aid of a

digital computer, is by the expansion of the control
laws in Taylor's series about known data. This pro-

cedure is described and explained. A more detailed

treatment of the material of this paper can be found in

R_nces 1 and 2.

_'_,_ I. SPACE VEHICLE GUIDANCE

A. INTRODUCTION

A convenient starting point for a discussion
of fundamentals of space vehicle guidance can be found

in the following list of basic inputs:

(1) Flight Environment

(2) Vehicle Performance Characteristics

(3) Mission

(4) Optimization Criteria.

This introduction consists of considerations of

these four items, which are pertinent to steering a
space vehicle.

By the flight environment is meant the physical

situation in or through which the vehicle is expected

to fly, i.e., its universe. Mathematically, this
amounts to the total extra-vehicular accelerations ex-

perienced by the vehicle during flight. Primary ex-

amples are the gravities of neighboring bodies and, in
many cases, atmospheric drag. For nonatmospheric

flight, it is assumed that in some coordinate system,
the environmental accelerations are known functions

of, at most, the position and velocity coordinates of

the vehicle and, possibly, time. If the vehiclo is con-

sidered as a point of variable mass, this is sufficient.

Whenrigid body dynamics are of interest, the situation

By vehicle performance characteristics is meant

those parameters pertaining to the vehicle and of sig-

nificance to its motion. In this category are placed

those parameters defining the magnitude and direction

of the vehicular thrust vector. For atmospheric flight
the effects of vanes, rudders, and more generally of

vehicle geometry must be considered. As a special

subclass of parameters in this category, we have the

flight controls. For steering a space vehicle, certain

devices are available for application, within con-

straints, by a pilot or computer, for the purpose of

appropriately influencing the motion of the vehicle.
The instantaneous effects of such devices manifest

themselves as parameters in the differential equations

of motion of the vehicle. These parameters are the

above mentioned flight controls. Typical constraints

encountered are upper and lower bounds on the values

of these parameters as well as the necessity of time -

continuous or piecewise continuous variations.

The third item, the mission, is a problem area

in itself. Generally speaking, the mission is stated

qualitatively. For purposes of space vehicle guidance,
the mission must be stated analytically. The transi-

tion from one to the other generally brings an investi-

gator face to face with many of the classical unsolved

problems of celestial mechanics. However, the mod-

ern computer has made feasible many numerical ap-

proaches hitherto undeveloped. In any case, the mis-
sion is assumed to determine a number of mathematical

relationships among the position and velocity coordi-
nates of the vehicle and possible time, the simultaneous

satisfaction of which is both a necessary and sufficient
condition for mission fulfillment. For our discussion,

these relationships, calIed mission criteria, are as-
sumed known.

In many cases it is advantageous to consider a

stated mission as a member of a family of missions.

As an example, an earth orbit of given eccentricity,

major axis, inclination, etc., can be embedded in a

family of earth orbits of varying eccentricities, major

axes, inclination, etc. Generally, the family is as-

sumed to be defined by certain parameters, called

mission parameters. Each mission of the family dif-

fers from the others by alteration of one or more of

the mission parameters.

J, •
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.I '; ' donsider 'now the fourth i.,tem, optimization criter-

"ia. It can and does happen that in steering a space
vehicle from a given set of conditions, one encounters

a multiplicity of possible trajectories leading to mis-
sion satisfaction. In such circumstances, it is natural

to seek out the best or optimum trajectory. The cri-

teriaby which one decides which trajectory offers the
most desirable solution shall be called optimization

criteria. For our purposes, the optimization criteria

are assumed to be dependent on the considered family

of missions, but not on individual members.

The preceding comments are sufficient to allow a

discussion of the steering decision itself. We shall

see how this decision is related to the four items just

discussed by way of the differentialequations ofmo-

tion of the vehicle.

B. THE STEERING DECISION AND THE DIF-

FERENTIAL EQUATIONS OF MOTION

If the flight environment and vehicle perform-
ance characteristics are known, then for an assumed

set of values for the flight controls, the instantaneous
differential equations of motion can be written. To

discuss this, we introduce the following notation.

In a three-dimensional Cartesian coordinate sys-

tem, let x, y, and z be the position coordinates of the

vehicle. Let u, v, and w be velocity coordinates:

:_=u, y=v, and_=w. Let m denote the instantan-
eous mass of the vehicle. Let F denote the instantan-

eous magnitude of the vehicular thrust, and let the

direction of this thrust vector be defined by the two

angles _ and 0. (The actual convention for measuring

and 0 is not pertinent here. ) As usual, t denotes
time and a dot indicates differentiation with respect to
time.

Using Newton's second law and dividing by m ¢ 0,

one can generally obtain expressions of the form

X_ U,

y_v,

Z _W_

ti = f(F, ¢, 0, m, x, y, z, u, v, w, t),

= g(F, _, 0, m, x, y, z, u, v, w, t),

_¢=h(F, ¢, 0, m, x, y, z, u, v, w, t).

Other differential equations may or may not ap-

pear, depending on the construction of the vehicle.
For example, some vehicles are of constant thrust,

so that additionally

m = c, a constant.

When all equations are written, the flight controls,

since they are open for selection, will appear on the

right hand side of the system, but not on the left. By

way of illustration, we consider the constant thrust

vehicle. This has the system

X=U

_}=V,

Z=W,

ti= f(F, q_, 0, m, x, y, z, u, v, w, t),

_} =g(F, _, 0, m, x, y, z, u, v, w, t),

@=h(F, q_, 0, m, x, y, z, u, v, w, t).

l_l = C,

(1)

Since the thrust is of constant magnitude, the pilot

has available the direction of thrust for steering.

Thus, the flight controls are ¢ and 0, and these are
the two parameters appearing on the right side of (1)

for which there are no corresponding differential

equations. In this example, the steering decision con-

sists of selecting values at each instant for _ and 0.

However, this is not to be done arbitrarily. Consider

that the values of q_ and 0 which are most appropriate
will depend on current position, current velocity,

current vehicle performance parameters and current

time, eventual mission satisfaction, and optimization
criteria.

Thus, we canexpect the flight controls q_ and 0 to

be functions of current state, current performance

parameters, current time, and mission parameters,

defined via the optimization criteria. In the more

general case, the flightcontrols will be such functions,
called the control laws.

In order to see more explicitly in what way the

control laws are defined, we consider a system of the
form

xl =gl (xl, x2, .... xm, u 1, u2,..., uk, t),

x2 = g2 (xl, x2,--., xm, ul, u2 ..... uk, t),

:_m = gm (xl' x2"'" ' Xm' ul' u2"'" Uk' t).

(2)

t3



This system is to be thought of as representative of

the differential equations resulting from application of

Newton's second, laws." System (i) is thus a special

case of system (2). The steering decision now be-

comes the determination of the quantities u I, u 2..... tt k

as functions of current values of x I, x 2, ..., x m and t.

The x I, x2,... , Xm must be thought of as containing

position and velocity coordinates and whatever else is

appropriate.

The mission criteria are functions of position and

velocity coordinates and time. It will be convenient

to write them as functions of all the variables x I,

x2,..., x m. Thus, the mission criteria are denoted

by

Fj(xl, x 2..... x m, t, c 1, c 2..... Cp) : 0;

j :1,2 ..... s.

The parameters c I, c 2, .... Cp represent the mission
parameters.

It is at this point, in many cases, possible to ap-

ply an optimization theory such as the calculus of

variations in order to impose the optimization criteria.

It is beyond the scope of this paper to discuss such a

theory; there is abundant literature on the subject.

What we need are only the end results of the optimi-

zation. Generally, there are three of these. First of

all new variables may be introduced into the problem.

(This is a consequence of the use of Lagrange multi-

pliers. ) The variables xl, x 2, ..., x m, t willremain,

but the variables ul, u2 .... , u k may be replaced by a

new set containing k or more variables. The ul,...,

u k can be determined once the new variables are

known, and so it is sufficient to work with the new

variables.

Secondly, with the new variables, every variable

is furnished a first order differential equation. Thus,

system (2) is transformed to a system

Yl =fl (Yl, Ya ..... Yn't)

Y2 : f2 (Yl, Y2 ..... Yn't)

(3)

Yn : fn (Yl, Y2 ..... Yn't)"

Unlike system (2), the only variable on the right-hand

side of (3) for whichthere does not appear a differen-

tial equation is t. In system (3) we identify the vari-

ables Yl, Ya,..., x m. The remaining variables

Ym+l .... ' Yn' take the place of'ul, u2,'.. , uk,; The •

steering decision now consists of determining"

Ymel ..... Yn for given Yl ..... Ym and t.

Thirdly, the optimization theory furnishes addi-

tional end conditions to be met concurrently with the
p

mission criteria. The additional end conditions may

involve more variables than the mission criteria; they

generally depend on all the Yi and t. We therefore

combine the new end conditions with the mission cri-

teria; instead of depending only on Yl,.. •, Ym, t (ab-

stractly), we depend on Ym+l ..... Yn as well. The

result of this is the set of end conditions

Gj(yl, Y2 ..... Yn, t, c 1, c 2..... Cp) = 0, (4)

j = 1, 2 .... , n-m+l. The fact that the total number

of end conditions becomes n - m+l is a result of the

optimization theory.

We are now nearly in a position to define the con-

trol laws. We need only introduce one further nota-

tion. Let the functions

Yi (t, _-, r/l, r/2,..., rln), i = 1, 2 .... , n

represent the general solution to (3) in terms of initial

conditions at T. Thus, for each i,

Y.(T, r r/i,. r/n ) =1 ' " ' ' r/i'

and the functions Yi, considered as functions of t,

solve (3) for all initial conditions. Suppose the space

vehicle to be at a certain point of flight• The position,

velocity, time, and performance parameters dictate

the values for r, 771,r/2,-.., r/m" A littlereflection

reveals that the steering decision consists of the de-

termination of r/m+l ..... r/n" But each selection of

r/m+l ..... r/n yields exactly one solution of (3). The

questionbecomes, "Do there existvalues of r/m+l .....

r/n yielding a solution of (3) which at a later time t

satisfies (4) ?" Note that there are n - m+l conditions

in (4) and there is available, to satisfy these the

selection of the n - m initial conditions, r/na+l..... On
as well as time t of mission fulfillment•

In reality, therefore, one substitutes the solution

Yi = Yi (t' _-' r/1 ..... r/n); i : 1, 2 .... , n

into (4) and solves the system of n - m+l equations

for the n- m+l unknowns r/m+l ..... r/n, t in terms

of T, r/1 ..... r/m, cl,''" Cp.

14
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, L_t these _oldti'ons be' denoted by

J

= fir (_- Cp)'7?m+r ' 7h""' _?m' cl""' '

r= 1, 2,..., n-m (5)

t--tf(T, _?1..... _m, cl ..... Cp).

The functions in (5) are the c_)ntro_ laws and embody

the steering decision.

In general, Yi cannot be substituted into (4) and

solution for fir and tf cannot be obtained, since the
functions Yi are not available. However, the functions

in (5) are nevertheless well defined, and can be nu-

merically represented on the basis of the defining

properties of the Yi and the conditions that the fir and
tf solve (4). This is the subject of the next part.

II. NUMERICAL PRESENTATION OF THE

CONTROL LAWS

A. INTRODUCTION

We now concern ourselves with arriving at

some numerical representation of the functions

fir( r, 71 ..... Nm, ci ..... Cp) and tf(T, _71..... 77m,

cl,... , Cp). One approach is presented here. It is
certainly not the only possible solution and is presented

merely as a possibility.

First of all, we assume that one solution of the

problem is known numerically• That is, for a partic-
ular set of values

T*, _ _'''' _]m' c ,...,

the corresponding values _m+r* = fir (T* , T}'_,.. L' ff_n,

ci_,...:, Cp), r = 1, 2 ..... n-m andS* = tf(r_', ....

_?m' c'[ ..... c'_) have been numerically determined.
This might be accomplished by an iteration on a digital
computer. In any case, using the initial values, T* ,

rri" ..... 77 , _m+l*, .... _?'n' equations (3) are nu-
merically integrated to yield numerical values for

Y. (t, _-
1 , ., _n); i= 1, 2 ..... n,

r -<t-<t * .

This particular solution shall be called a reference

trajectory.

The idea now is to find the (truncated) Taylor's
series for the control laws about the solution

* = fir( , 77 ,. , 77 , ff _"_m+r .. ,..., c ;

r- 1, 2,..., n-m

t*'_- tfiz 'i" _/_;, , r/'_n, c:_ c":p)• . • _,.. , ,

This can be accomplished once numerical values are

known for the partial derivatives of sufficiently high

order of the control laws with respect to their argu-

ments, evaluated at the point (T*, _ ..... _m,

c'[ ..... c ). For brevity, we shall only show here
how to obtain numerical values of all first partials.

The procedure generalizes readily to higher orders.

B. THE FUNDAMENTAL IDENTITIES

The entire procedure is based on three funda-

mental identities. These are, first, an identity satis-

fied by the function Yi by virtue of being solutions of
(3), secondly, a second identity satisfied by the func-

tions Yi characterizing the parameters as initial

values, and thirdly, identities satisfied by the control

laws by virtue of solving the end conditions. We now
list these:

0Y.
1

0t = fi(Y1 ..... Y ,t); i = 1, 2 ..... nn
(6)

Y.(T, T, ??1''''' _?n) _?i; i= 1, 2,..., n1

and

(7)

G°

J (_'1 ..... _'n' tf, c 1, c 2..... Cp) -0;

j = 1, 2 ..... n-m+1

(8)

in which

_'(T,_?I ..... 77m, c 1..... Cp) = Yi(tf, 7h ..... "_m

(9)
fll .... , fin_m); i = 1, 2 ..... n.

Identi_ (6) is understood to hold in all of the

arguments t, T, _?l..... _n" Identity (7) holds in all

of the arguments _-, _l ..... _?n" Identity (8) holds in

the arguments of the control laws; i.e., in _, 71, • • •,

_m' el""' Cp.

-Under certain conditions, the above identities can
be differentiated an unlimited number of times with

respect to their arguments to yield further identities.

We assume this to be the case; for justification, see
Reference i. In particular, using the chain rule, (8)

can be differentiated with respect to _k; k - i, 2,...,

m, if or c i, i = i, 2 ..... p. For _?kwe obtain

n _G. i-'_Y 0t_ _Y n-m 0Y -]
----J-[----q_--L--_ + Cl+ _, q a/3r J

q=l Oyq[_O_/t O_/k O_k r=l Or/m+r O_/k

OG. Otf
+___L __ =0

at 0_ k
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k= 1, 2..... m, j= 1, 2..... n-m+l. For fixed'k,
werewrite theaboveasthesystem

r=l =1ayq

aY "__r [OG. n aG. _Yq_ atf

) +l--l+v __l_ata_?m+r E t at _=1 ayq

n OG. OY

=__ __A_ q
q=l Oyq a_k

j = 1, 2 ..... n - m+l (10)

and view the system as a system of n - m+l linear

equations in the n - m+i unknowns

Oflr 0tf
--; r = 1, 2, n-m,--.
a_k .... 0_k

Similarsystems can be obtained for differentiation

with respect to T or c£. We take (i0) as exemplary.

Now the arguments in (10) are those of the con-

trol laws; it has already been pointed out that the ex-

pansion is to be made about the point (T* _11 .... '

Tim , c 1 ..... Cp). We therefore evaluate (t0) at
.,. _I_ aT ,, ..., Cp). Assuming the re-(T", rh .... _m'

sultant system to be nonsingular, once the coefficients
of the unknowns

afir 0tf
-- , r = 1, 2,..., n-m, and-
a_?k b_k

are numerically determined, the system can be solved

by standard processes for the desired numerical
values. As similar statements hold for systems ob-

tained by differentiation of (8) with respect to T and

el, we will present only the details for (10).

C. DETERMINATION OF COEFFICIENTS IN

(10)

To determine the coefficients in (10), we need
numerical values for the quantities (for appropriate

arguments):

aY

q; q : 1, 2 ..... n; k 1, 2 ..... n.
a_ k

aY aG. aG.
q and ___J __A

at 0t ' 0yq
, j = 1, 2 ..... n-m+l,

q= 1, 2,..., n.

Partials of the Gj can be directly calculated from

only' p ' ' "the end conditions. The l:oblen_ is'tHe detern5i-

nation of

aY OY

q since q
arlk ' at

is simply given by evaluation of the right side of (3)
at the time of mission satisfaction.

Differentiation of (6) with respect to _k gives

af
= q

-_ \ankJ j:l ayj arl k '

(11)

which is a linear homogenous system in the unknown

partials

aY

q. q=l,2,, ..., n;k= 1, 2,... , n.

Differentiation of (7) yields the initial values for (11)

at t = T; in fact

___1 = 5jk, the Kronecker 6.
a_}k t= T

af

Also, the functions q are numerically known along

ayj

the reference so that (11) can be integrated numeri-

cally from t = T*. Reading off the integrated values

yields the desired results.

As has been pointed out, similar procedures ap-

ply to the determination of.the remaining first order

and higher order partials.
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WALL PRESSURE FLUCTUATIONS AND SKIN VIBRATIONS

WITH EMPHASIS ON FREE SHEAR LAYERS AND OSCILLATING SHOCKS

By

. Fritz R. Krause

N65-241 8
SUMMARY Symbol Definition

Ever since the failure of the first Centaur flights,

high frequency skin vibrations have been of much con-

cern. Large wall pressure fluctuations below sepa-

rated flows and oscillating shocks lead to a dangerous

resonance excitation over the entire transonic and

supersonic portion of the flight. A new relation be-

tween pressure and force correlations has been estab-

lished for inhomogeneous turbulence in order to

account correctly for the largest pressure fluctuations

below oscillating separation and reattachment lines.

It shows that the power spectra of the generalized

forces can be found from rigid model tests by a curve

fit of a special pressure cross correlation function.

However, a curve fit of experimental pressure corre-

lations is useful only as long as the statistical error

of a cross correlation estimate is smaller than the

numerical error of the curve fitting procedure. Non-

linear transfer functions and dynamic shifts in pres-

ently available pressure transducers and tape record-

ers are so large that the more refined force estimates,

which consider the spatial structure of the pressure

field, might lead to ambiguous results. _._//

DEFINITION OF SYMBOLS

Geometrical and Panel Paramters:

Symbol Definition

a, b edge lengths /

A panel area, ab

X streamwise surface coordinate

Y crosswise surface coordinate

)cp wave number in x, y direction

m number of loops in x direction

number of loops in y direction

h panel thickness

dens'ity of plate material

D flexural rigidity

E Young's modulus of elasticity

Poisson's ratio

u Eigen value of two-dimensional wave

equation

M modal mass

modal damping ratio

w transverse deflection

q generalized coordinate or loop

deflection

Flow Parameters:

p wall pressure

U velocity

5 geometrical boundary layer thickness

on clean wall

F generalized force

S cross-power spectral density

R cross correlation function

t time

T time delay

b noise bandwidth in radians/sec

w angular frequency, radians/sec

T integration time

H(o_) complex frequency response function

q9 (w) phase shift angle

N number of data transmitting elements

A2R Mean square error of cross corela-

tion estimate

18
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' ' ? DE_II_I'TiON ()F SYMBOLS (Concluded)

Symbol Definition

A pertubation

Sub and superscripts

1 fixed transducer

2 moved transducer

m, n, k, i summation indices

p pressure

F force

/x plane wave approximation

o natural frequency

C convected turbulence

* Space average for a translated

transducer pair with fixed separa-
tion distances.

- wall pressure approximation with

mode shapes

I. INTRODUCTION

Recent wind tunnel and flight tests indicate that a

large booster will experience wall pressure fluctua-

tions during the transonic and supersonic portion of
the flight, bigger than the jet noise at the launch.

Figure I shows some root-mean square pressures that

&PRMS =_ db
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were measured during the fourth flight of a Saturn I

vehicle [ 1]. At the sup_rsonio Mach number of 1.6,
the fluctuation level of the transducer D-159-20 is 14

db higher than at launch. Because of the supersonic
flow, an upstream radiation of jet noise is not pos-

sible, and the highest level of . 16q must be induced

by a noise generationprocess. In subsonic free shear

layers the observed pressure fluctuations are below

10 percent of the local dynamic pressure, and in at-

tached boundary layers the RMS values are usually

equal to . 5 percent [ 2]. Therefore, the area between

the 10 percent and. 5 percent dynamic pressure curves

has been shaded and called "free shear layer noise. "
RMS values below the shaded area are called "attached

boundary layer noise" and those above 10 percent dy-

namic pressure "shock induced noise. " Apparently
the highest fluctuations can be explained only by a free

shear layer interacting with an oscillating shock.

The three transducers were located near the

S-IV/S-I interstage as indicated by Figure 2. Repro-

ducing the flow field from MSFC wind tunnel shadow-

graphs, one sees immediately that the flow above the

transducer cross section is indeed separated. The
high pressure fluctuations of the transducer D-159-20

were picked up shortly downstream of a sharp I-beam

fairing, and an oscillating bow shock might have been
the cause.

FIGURE 2. FLOW FIELD REPRODUCED FROM

WIND TUNNEL SHADOWGRAPH

A power-spectral analysis of the three trans-

ducers indicated several peaks which are centered

around a Strouhal number of. 2, as shown in Figure

3. These peaks are known from the vortex shedding
behind two-dimensional cylinders, and thus might be
taken as further evidence of a flow separation inter-

acting with an oscillating shock.
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Unfortunately, the high RMS values occur between

frequencies of 120 to 240 cps, whichis intbe range of
fundamental resonance frequencies of individual skin

panels. The flat curves of Figure 1 have shown that

the high RMS values are not limited to a small Mach
number range but do extend over the entire transonic

and supersonic portion of the flight. This has been
substantiated in model tests that were run at Douglas

Aircraft Company [3]. Typical "saw-tooth-type" dis-
tributions are shown in Figure 4. They are essentially

independent of Mach number. In flight, the dynamic

pressure for Machnumbers below 3 is appreciable and

2.0

FIGURE 4. ROOT MEAN SQUARE PRESSURE
VERSUS MACH NUMBER - DAC

MODEL TESTS

the corresponding time interval extends over approxi-
mately 30 seconds. Severe fluctuations might there-'

fore cause a dangerous skin excitation over an extended

period of time, and every effort should be made to

study the intense, high frequency wall pressure fluc-

tuations which are produced by flow separations and

oscillating shocks.

II. AERODYNAMIC EXCITATION AND STRUC-

TURAL RESPONSE

Ames Research center and the Marshall Space

Flight Center are working jointly on a wind tunnel

program whose purpose is to measure wall pressure
fluctuations below free shear layers and oscillating

shocks [ 4]. These pressures will supply a generalized

force for each generalized coordinate chosen in the

description of the skin,vibration tests. The test will

be performed on individual forward- and backward-

facing interstage areas and local protuberances rather

than on a complete Saturn model. This is necessary

to obtain Reynolds numbers which are already so high
that afurther increase tofull scale will not change the

flow separation and reattachment lines [ 5,6]. For

complete models, the Reynolds numbers are so low
that the wanted flow separations and shock oscillations

may not occur at all [ 7].

A local treatment of structural components is

possible for all elements which almost conserve their

vibration energy [8] (kinetic energy plus work of

stresses'[ 13] and pressures). All structural coupling
withthe rest of the vehicle has to be small. Such ele-
ments have been defined in terms of "correlation

boundaries" like stiffness and heavy internal masses

[ 19]. They could be found in shake tests on the ground

by measuring the acceleration of the skin at different

points simultaneously. A correlation boundary e.x-
exists between two accelerometers if their cross cor-

relation is negligibly small.

The simplest treatment of local panels is given

by the classical modal approach [ 10] which might be
viewed as an attempt.to curve-fit a flashlight image of
the skin deflection with a linear combination of stand-

ing flexural waves. For the rectangular flat plate,

these waves canbe guessedeasily (see Fig. 5). From
all conceivable flexural waves, the standing ones are

those which are continuously reflected to and fro be-

tween opposite edges of the plate. This can happen

only for waves which run in either x or y direction,

provided that the distance between the edges corre-
sponds to a multiple of the distance between nodal

points. Denoting the number of loops which are
counted in x and y direction by the wave numbers m

and n,. the distance between the nodal points becomes
a/m and b/n; die wave length of the flexural waves is

exactly twice this distance [t4].
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Each running wave has a sinusoidal time history

of deflection and, because of the continuous reflection

at the edges, the distribution in time is converted to

a distribution in space. As a result, one determines

that the ftexura[ waves of a simple supported, flat

plate have a sinusoidal shape.

(Pmn(X,y) = sin wm.__ffasin _b" (1)

For n, m= 1, 2,.... the complete setof stand-

ing waves is then used to approximate the skin deflection

w (x, y, t) ; all other flexural waves are neglected.

co cO

w(x,y,t) = _ _ qmn(t) (Pmn(X,y) (2)
m=l n=l

The coefficients qmnOf this curve fit describe-a flash-

light image of the deflection; they are called the

"generalized coordinate" or "responses." Each re-

sponse is due to the excitation of a generalized force

0w

F(m,n,t) : f f p -_q dA
A

(3)

= ffp(x,y,t) (Pmn(X,y,) dxdy.
A

The r_laLion between these excitations and the re-

sponses q can be illustrated by the forced oscillation

of a harmonic oscillator, as shown in Figure 5. The

angular natural frequency of the oscillator is

n 2 %/ Eh 2
¢0(m,n) = u2 (___ +_._) _12(1-_)2)P ' (4)

and its mass is given by

M(m,n)= ff phq_mn2 dxdy=p abh/4.
A

(5)

The inevitable loss of vibration energy is determined

by the oscillation decay of a free vibrating panel. The

ratio between the energy loss and the work of the

bending moments is equal to four times the ratio

_.(m, n) between two consecutive amplitudes of a stand-

ing but decaying ftexural wave.

Unfortunately, the wall pressure fluctuations be-

low free shear layers and oscillating shocks are

neither sinusoidal nor periodic. Because they are

samples of a random process, the generalized force

which is their space integral, equation (3), will also

be random. Since we have random forcing functions

for eachof the equivalent oscillators, n and m, statis-

tical methods have to be used. "These methods have

already been developed in communication theory. The

asymptotic response to a random force will therefore

be given by comparing the equivalent oscillator to the

electronic element of a data reduction chain. The

generalized acceleration F (m, n, t)/M is treate_1 as an

input signal, and the generalized coordinate qmn(t)

as an output signal.

The statistical description of the input and output

is based on a frequency decomposition which might be

described through the action of an ideal digital filter,

as shown in Figure 6. The phase shift, (p, across this

ideal filter is zeros.rid the gain factor is infinite in an

infinitesimal frequency interval around _0 = w(m,n)

FIGURE 6.

DETERMINISTIC AND RANDOM

SIGNALS

such that the area under the frequency response func-

tion is one unit. The individual frequency components,

q(t, ¢0), are the output of such a narrow band digital

filter, they are described statistically by their mean
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square values or "power spectral densities", Sq(co) =
<q2(t, co)>, respectively.

The harmonic oscillator itself is a linear and

time invariant element that is, apure harmonic output.

The transmission of each frequency component is de-

scribed by the phase shift _ across the oscillator and

by the ratio between the output and input amplitudes
which are said to constitute the complex frequency

response function (Fig. 7),

H(w) deflection amplitude i_
= acceleration amplitude e (6)

= co2(m,n) _ co2 + 2 i _ co co(re,n)"

The power spectrum of the output is then equal to the

power spectrum of the input times the squared magni-

tude of the frequency response function [ 11].

I,,i,L,t I _,,_,,t, ,,I ,_, re.l,,, * 'L,LL,,LL

II "LI ķ ¸ MI ....... '1 I)""l_'b"_ _'_" ' '_ '_bl '"_ I"' ' _'

Cq" _,_,'[L,[' V'l,,' _'"'l '_Lb,, _'_.l,', ¸

b, '_ f_''_ _t"_'L ¸ _)' ']' ' t"_',

FIGURE 7. THE COMPLEX FREQUENCY RE-

SPONSE FUNCTION H(c0) OF A
MODE

SF(co)

Sq(co) = [H(co)12 M-----Y- (7)

The local treatment of structural components is pos-

sible only if the energy losses, that is, the damping

ratios _, are small. In this case, the "power transfer

function" H(co) 2 has two sharp peaks centered around

the frequencies, + COo, the bandwidth of which is given
by

b = -_ H(COo) dco = _r _ coo. (8)

• • , j

Because the oscillator will accept only tl_e t_v(_ fre-

quency components which are centered at the natural'

frequency coo, the mean square value of the response
becomes

< q2(m,n,t)> = 2b [H(coo) ]2SF(c°°) (9_

SF(m, n, co(m,n))

2 _(m,n) co3(m,n)

This excitation response relation splits the prediction

of skin vibrations into a structural part and an aero-

dynamic part. In the first, one would determine the

sizes, natural frequencies, mode shapes and damping

ratios of possible panels in shake tests on the ground.

The aerodynamic part would be to calculate the power

spectrum of the generalized forces S F(m,n, t) from
measured pressure fluctuations.

The relation between aerodynamic excitation, S F,
and structural response <qZ> has been illustrated for

the simplest of all cases, the rectangular flat plate

with simply supported edges [12]. The derivations
and a complete list of assumptions have been prepared

such that they might be verified in future tests.,

It turns out that equation 9 is valid not only for the flat

plate but for all structural components, the free vi-

bration of which can be described by orthogonal mode s.

A similar relation could be obtained for the general

case, where structural coupling between components

has to be considered [25]. The main difference is

that the modal frequency response function, equation

6, is replaced by an overall transfer function, which
has to be measured on shake tests on the ground.

III. STANDARD FORCE ESTIMATES

In rigid model tests, the problem is to find the

most dangerous generalized forces from measured

wall pressure fluctuations. According to the excita-

tion response relation, equation (9), the mean square

deflection of a single mode is directly proportional to

the power spectral density, SF, of the corresponding

generalized force taken at the natural frequency of the
mode. Most rigid model tests are therefore aimed at

the measurement of this property.

The power spectrum of the generalized force, SF,
was defined by filtering operations. Writing down the
mathematics of this filtering process [ 11] we find that

SF is the Fourier transform

-boo

___1 f RF (m, n,_)e-iCord, r (10)SF(m'n'co) = 27r
T __oo

r

°
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of th_'force-autocorrelation function

lim +T/2

RF(m,n,z ):: T _o 1_ fT F(m,n,t) F(m,n,t+T)dtT_ /2

(11)
= <F(m,n,t) F(m,n,t+7)>.

The wanted relation between forces and pressures is

now obtained by substituting the definition of the gen-
eralized force

F(m,n,t) = ffp(x,y,t) _mn(X,y) dx dy
A

(3)

into equation (21). Inverting the order of space and

time integration, we obtain an exact, but unwieldy
fourth order integral

R F (m,n,z) =

ff f/<P(Xl, Yl, T ) P(x2, Y2, t+T)> (? mn (xl' y 1)x_
A A

(Pmn(X2, y2) dxl dyl dx2 dy 2. (12)

The first factor of the integrand summarizes all the

information that has to be obtained from rigid model
tests. It is called the "pressure cross correlation

function, "

R (xl,yl,x2,y2,z) =<p(xl, yl, t) p(x2,y2, t+7)> , (13)
P

whose measurement is described in Figure 8. Two
transducers, 1 and 2, are located at the points xl;yt

and x 2 : x 1+ _; Y2 =yl +7- The signal from trans-
ducer 1 is delayed by the time T. Both signals are

then multiplied and the wanted pressure cross cor-

relation function is the output from the time averaging
element.

S \I/ Expansion

......l It
X X"F_ 0

PO](t) p(_](t)

t t

,,m.o.,o, p(') (t) pl2llt + v)

--I AveragerPlotter

Rp (v) [-_ Ap [ _ _)(t)p_2)(t + r) _)

FIGURE 8. MEASUREMENT OF THE STANDARD

PR ESSURE CR OSS C ORRE LA TION

The numerical and experimental effort can be

reduced if a conservative estimate of R F or S F is ac-
ceptable. The most simple of all estimates is obtained

by replacing the actual pressure field p(x,y,t) with

normal incident pressure waves, the strength of which
corresponds to the maximum pressure fluctuation

p(x,y,t) -< _(t), "normal wave estimate". (14)

Substituting equation (14) into equation (12), the
power spectrum of the generalized force becomes

For an accurate integration of equation (12), each

transducer has to be moved independently over the

whole panel surface and the cross correlation repeated

over and over again for each combination of the two

transducer locations. This is very cumbersome. To

obtain design criteria, the process must be repeated

for each resonance frequency and for the combinations

of Maeh number, Reynolds number, upstream bound-

ary layer thickness, wedge angle and step height. The

transducer output has to be recorded for approximately

30 seconds to obtain statistically reliable time aver-

ages. Evidently, such an approach requires an ex-

cessive amount of data, and it is doubtful that the

direct evaluations of the fourth order integral could
be tried for more than one or two cases.

SF(m,n,w) < /4ab / 2
- _2 m---_j s_ (_), (15)

which is directly proportional to the power spectrum

of the incident pressure wave. As a result, a con-

servative estimate of the aerodynamic excitation can

be obtained by looking at the power spectral density of
all wall pressures which have been measured inside

the edges of a particular panel. For designestimates,

the power spectral density has to be evaluated at the

natural frequencies of the panel. From all transducer

locations, that one must be found which gives the

largest SF(co(m,n) ).

The plane wave estimate neglects completely the
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spatialstructureof the pressurefield. Severalat-
temptshavebeenmadeto includespatialcharacteris-
ticsfor statisticallyhomogeneousflows. Theassump-
tion of homogeneitymeansthat the pressurecross
correlationis invariantagainsta translation[15].

R =R
P P

(_ = xl-x2; _ = Yl-Yg,

"homogeneous turbulence".

(16)

A good summary has been given by Allan Powell [ 16].
The autocorrelation of the generalized force is, in

first approximation,

RF(m,n,T ) --- Sp(X = 7rm P)--, #= J(m,n)
a

+ +S (X-- _ln 7__).. , p=- J(-m, -n),
p a D

(17)

proportional to the wave number components of the
pressure field

-_oO

1 e-i ()t _+p n)d_- ff
_+o (18)

which are centered around the structural wave num-

nm nn
bers X = •--'a p : i --if, and some structural weights :

j(m,n) =7/mr ( Iff(Pmn(X,y) ei _x_x+" Y ) dx dy I)2 d ' d_. (19)

The wave number components Sp might be viewed as
influence coefficients which are necessary to curve-

fit the pressure cross correlation Rp with harmonic

spatial waves e i(xx +PY). In a sense, the autocorre-

lation of the generalized force is therefore obtained

by the curve fit of a measured cross correlation func-

tion. In homogenous turbulence the measurement of

Rp requires that only one transducer be moved. The
fourth order integration of equation (12) is then re-
duced to the double integral of equation (18).

Unfortunately, intense noise sources seem to be

connected with inhomogeneous flows. Homogeneous

turbulence represents uniform flows behind grids [15],
whereas the main noise sources are associated with

attached [17], [18] and separated (jet) boundary

layers [ 19] , [ 20]. High shear and homogeneous tur-
bulence are theoretically incompatible.

In supersonic flow additional noise sources must

be expected. The presently conducted wind tunnel

program indicates that flow separation lines (shock)
and reattachment lines are always unstable and lead

to a very high noise level, in'these regions,, a'co_-

stant convection speed does not exist, ant the assump-"

tion of homogeneity is very questionable.

IV. FORCE APPROXIMATIONS FOR

INHOMOGENEOUS TURBULENCE

The largest pressure fluctuations are expected

for inhomogeneous flows, and a new simplification of

the pressure field is needed which is not restricted to

homogeneous pressure fields. In this paper, it is

proposed to curve-fit a flashlight image of the pres-
sure fields with a set of orthogonal eigen functions:

p(x,y,t) -_(x,y,t) :m_-j=i n=12fmn (t) q)mn (x'y)"
(20)

Approximations of this kind are very general and

should fit almost all pressure distribution which occur

in flows, except in the vicinity of the edges. In prin-

ciple, any set of orthogonal eigen functions might be

chosen. Using the mode shapes, however, has the

advantage that the coefficients finn are directly pro-

portional to the generalized forces, equation (3). The

mean square deviation between the given pressure, p,
and its approximation _ is a minimum, if

= . F(m,n,t) 4 F(m,n,t) (21)

fmn(t) ffA q2mn(X'Y) dx dy = _

One could argue that the curve fit of equation (20) is

very impractical since it has to be repeated for each

instant of time and might require a large number of
coefficients. In fact, the individual coefficients should

never be calculated. They are rather the basis of a

statistical procedure where the individual coefficient

is immaterial and only the average over a large num-
ber of curve fits is used. For homogeneous turbulence,

this has been tried by establishing the relation between

the pressure cross correlation and the force auto-
correlation. The forces are then found by curve fit-

ting Rp with complex waves. If we wish to find a
similar relation for inhomogeneous turbulence, this
function should be based on a translation of both trans-

ducers (Fig. 8) since this is required in the accurate

fourth order integration, equation (12). In view of

these considerations, a "special pressure cross cor-

relation" 1_ is now introduced which ties the wanted
force correlations to the measurable pressure cross

correlations, Rp.

The measurement of the special cross correlation

R_is shown on Figure 9. A pair of pressure trans-
ducers is moved across the panel such that the separa-
tion distances remain fixed. The special cross cor-

* is then nothing but the space average ofrelation Rp

k
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FIGURE 9. THE SPECIAL CROSS CORRELATION

FUNCTION R*p

The wanted relation between R_ and the force corre-

lation is found by establishing the special correlation

for the simplified pressure model

R;= _v aS _(x'y't) _(x+_' Y+'0' t+T)> dx dy.
o 0 (a-_) (b-v)

(23)

Substituting equations (20) and (21) and neglecting

the force cross correlation between modes [12] , we
find the wanted relation

oo oo

m=l n=l

4
_2 Cmn (_'_?) RF (m,n,r).

(24)

The structuralweights Cmn are completely determined
by the mode shapes

Cmn ($'_?)=
(25)

(a-D (b-n) 0 0

For the rectangular flat plate with simply supported

edges, they are shown in Figure 9.

According to equation (24), the wanted, force cor-

relations R F are the influence coefficients of a curve

fit which approximates measured R;_ pressure cross
correlations with known structural weighting functions

Cmn(_,_?). Once again the unknown coefficients are
determined by the method of least squares. The mean

square error between the measured R:_, and the ap-
proximated special cross correlation, RL

P

1 ab

a b co oo

1-'- Of f Rp(_,_,7" 4A I ) - V
m=l n=l

(26)

c_m (_a) o_n (_b)] 2 d_)d_

is required to be a minimum. This will happen when

the partial derivatives 0 (A 2 1_) / ORF vanish• Writing
this condition of extremum down for all combinations

k,l = 1,2,. ........ , _, we obtain an infinite system

of algebraic equations:

ab

=) ¢,_,(_,77)d_?d_ = 0. (27)

In explicit form

ab

1-- 0f0fR$(}' _)' T)_k(_/a) _l 0)/b)d_d_A p

_ (28)4
-A _._ _ RF(m,n,r ) C(m,k) C(n,l).

m=l n=l

The constants C(m, k) are an abbreviation of the fol-

lowing integral:

1

C(m,k) = ( O_m(_a' °_k (_a) d._a
0

(29)

The same equation holds for the constants C(n,l) if
n and I are substituted for m and k.

The right-hand side of equation (28) approaches
zero as 1/n 2. The left-hand side of equation (28)

represents a space average of a special correlation

function which is weighted with the functions a k _and

ag. For higher values of k and _, these weights ap-
proach cosine functions, the signs change rapidly with

the separation distances } and _/, and the integral goes

to zero. Consequently, one might truncate the system

since all coefficients C(m,k) and C(m,_) with

m, n, ?_k, Z decay rapidly with increasing difference
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betweenm andk andn and_. Thesolutionofthefinite
systemof algebraicequationscanthereforebeap-
proximatedin first orderbyconsideringthediagonal
elementsonly

(0) A a b
= fo fR*a a dT?d_.IIF (k,i,T) 4 C(k,k) C(i,i) 0 p k

(30)

Higher approximations are found most easily by

actually solving the finite system of linear equations,

preferably in an iterative fashion.

.
The curve fit of the special cross correlation Rp

is an attempt to replace the accurate but unwieldy
fourth order integration of equation (12) with something

more practical. As far as the numerical effort is
concerned, the curve fit is indeed simpler since the

fourth order integral is reduced to a system of alge-
braic equations between double integrals. A reduc-

tion of the experimental effort is not so immediately

apparent. The determination of the special correla-

tion function, equation (22), requires moving both
transducers over the entire panel, and nothing more

is required in the exact solution, equation (12). The

great advantage of the special correlation function is
that the number of measurements can be matched

easily to the present statistical theories of turbulence
and to the flow type. If the turbulence is homogeneous,

then the special correlation R'_ and the standard cor-

relation Rp are identical; that is, the position of one
transducer can be fixed. Furthermore,the integral of

equation (22) does not depend on the location or the

size of the integration domain; that is, the rigid model

test is completely independent from all structural
considerations.

In the case of high shear flows, the rapid decay

of the short waves might change with the streamwise
position. The inhomogeneous behavior must be con-

sidered, if the integral scales of turbulence are small

compared to the panel size. However, the turbulent

structure of attached and free shear layers does not

change rapidly and the change of Rp with pair position
x will be smooth. For an almost linear dependence,

the number of pair locations is given by the stream-

wise extent of the largest panels. Two or three pair

locations might already be sufficient. In the cross-

wise direction, the flow is probably still homogeneous,

and no additional pair locations will be needed.

Below separation and reattachment, the inhomo-

geneous behavior of Rp ix, y) _, 7, T is difficult to pre-
dict. However, in any case, the aerodynamic engineer
could pick a minimum number of pair locations in a

streamwise direction, such that the integral of equa-

tion (22) stays within prescribed error margins (see

Section VII). There is no reason why the turbulent "

fluctuations should be inhomogeneous along the sepa-
ration and reattachment lines in two-dimensional or

axisymmetric flows. Therefore, panel size and loca-
tion are of no concern in a crosswise direction, and

no additional pair translations will be necessary.

V. QUICK LOOK PROCEDURES

Any statistical program requires a large amount
of data and the determination of generalized forces

from rigid model tests is a particularly bad case. The
success of such a program depends largely upon

whether or not the most dangerous cases can be iso-

lated at an early stage. A "quick look" for large fre-

quency components of the generalized forces should
precede any program which uses the spatial structure

of the pressure field to arrive at "true" force esti-

mates.

For quick look purposes, it is probably sufficient
to concentrate on the two limiting cases of broad band

and narrow band excitation, Figure 10. In a broad

band excitation, the integral over S F (w) will be large.

This integral is given by the autocorrelation at zero
time lag (mean square value) and a probably dangerous
broad band excitation of a single mode could therefore

be detected by looking at mean square values only.

The detection of large narrow band components

is much more laborious. In the derivation of the ex-

citation response relation, equation (9), it was shown

that the structure will accept only very narrow bands,

the width of which is only a few percent of the center

frequency. This means that the quick look should be

performed with equally narrow bandwidth; otherwise,

some dangerous narrow band components might be

Power Spectral Density of Generalized Force Sf (k,JZ,_)

\\\\ .... Broad Sand

/ \ -- Narrow Bond

/i

/ \

Angular Frequency =a

Autocorrelofion of Generalized Force Rf(k,l,r)

_ "-" [ Tempora, Conditions
\\ v o = 2=/w(k,Jl)

'_ _ Narrow Bond Components

I \ ' _ Random

FIGURE 10. DANGEROUS EXCITATIONS OF A

SINGLE MODE
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integrated out. a larger region of the frequency do-
'main must be covered, the narrow bandwidth leads to

a very large number of center frequencies, and there-
fore large computation times. The numerical effort

could be reduced considerably by using the autocor-
relation instead of the power spectrum. The two are

related by Fourier transform pairs; it is a general
feature of these operations that the transform is broad

if the transform function is narrow. To be more

specific, a narrow band peak of SF(co ) is present
whenever the autocorrelation does not vanish, but os-

cillates at time lags that are large compared to the

fundamental period of the panel oscillation

T o >> 2_/co (1, 1). Instead of looking at a large number

of center frequencies, it might be possible to concen-

trate on the autocorrelation at zero time lag and one

selected interval of large time lags.

In view of these considerations, a quick look pro-

cedure is sought which detects arough, quick estimate

of the force autocorrelations RF(m,n,7 ) from meas-

ured wall pressures. Obviously, the reliability of the

force estimate depends very much on the pressure
model which is used. In many cases, the plane wave

approximation, equation (15), is already sufficient. In
this case, a temporal Fourier transform of equation
(15) shows that the wanted autocorrelation of the forces

R F (m, n,T ) is directly proportional to the autocorre-

lation of the pressures R;_ (0,0,T). A broad band

excitation is present as soon as the RMS-pressure

(zero lag autocorrelation) is large. A narrow band

excitation might occur as soon as R'p (0,0,r) shows
a sinusoidal wiggle. If more than one mode is excited,

the correspondent asymptotic autocorrelation of the
pressures deviates from a simple sinusoidal pattern.

A Fourier decomposition of R_ (0, 0,T) will indicate
the time periods which receive the largest contribution

of the asymptotic wiggles. A dangerous vibration be-
comes possible as soon as these time periods coincide

with the time periods of standing flexural waves.

Unfortunately, it is not possible to restrict the
"look" for asymptotic RSn(T) wiggles to those combi-

nations of geometric al and flow parameters which were

indicated by large rms values since all narrowband
excitations are overlooked where the area under the

narrowband peak of SF (m, n, co ) is small compared to
the area under the complete curve (mean square

value) as shown in Figure 10. Both "looks" must

therefore be carried out for all combinations of geo-
metrical and flow parameters.

final analysis. For this purpose, the pressure model
must retain the spatial structure. The model of

homogeneous turbulence implies that the power spec-

tral density analysis must be repeated for the spatial

wave numbers or frequencies _ and #, equations (17)

and (18). Again the "quick look" could be based on
the general feature of Fourier transforms which has

been discussed above. It seems sufficient to measure

R_ (_,77,r) for selected large separations only. The
zero lag case has been treated in the plane wave ap-

proximation. A dangerous excitation is then detected

as soon as the asymptotic pressure correlation R_

(_'_?)T_oo wiggles at large separation distances suck

that the distance between zero crossings coincides

with the "space periods" a/m and b/n.

The "quick look" becomes very powerful, ff the

pressure fluctuations are due to a convected pattern

of steady decayingturbulence [ 16] which has been ob-

served in attached- [ 17] [ 18] , separated-[ 19] , and
jet-boundary layers [20]. In these cases, the pres-

sure time history at one point resembles the flash

light image of the pressures taken along the upstream

portion of the streamline (_? = 0). Therefore, a nar-

row band component of the pressure power spectrum,

which is centered around the angular frequency,
co = 2v/_- o, indicates a spatial cross correlation func-

tion, R'p ( _, _/,_ ), which has the space per iod X = U c- _ o"
Thus, the spatial and temporal wave numbers are no

longer independent and the criterion for large excita-
tions may be reduced to one single condition,

U = co(k, 1) a k, I = 1, 2, 3 (31)
e 27rk '

for the convection speedU c of the pressure fluctuations.

To check whether or not the measured wall pres-

sure fluctuations are due to convected turbulence, one

needs only two transducers which are separated along

the streamline _?= 0 as indicated in Figure 11. A con-

vectionis present as soon as the temporal cross cor-

relation between the two transducers is comparable to
the displaced autoeorrelation of the upstream trans-

ducer. A "resemblance" exists as soon as the cross

correlation function has a distinct maximum and an

average convection speed U c [21] might be based on
the time delay, 7m, at which the maximum occurs

U =-'-_- (32)
C T

m

The flight data of Figures 1 and 3 already indicate

that the plane wave approximation might give a large

number of "dangerous" Mach numbers. One might

want to further reduce the number of geometrical and
flow parameters which have to be considered in the

In the quick look, one is concerned with the convection
speed over large separation distances which are com-

parable to the largest edge lengths, a, b. The domi-

nant nondec ayed portion of R_ ( _ , _?,T ) would be statis-
tically homogeneous if this convection speed is constant
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acrossthepanel. However,for homogeneousturbu-
lence,the specialcrosscorrelation,Rp, is reduced

2t Approximation

b R,(_,.q,'r)='-_-<p (t)p (t+'r)>

_' Transducer " +(I- _--a) <P(I)(t)P(3)(t+T-Tm_-)>

X

_=a

Rp(x=o,y = o, _,'_, v)

I

."- "_ _ = o, -q = o //_ "\j_ = o, _=o

Narrow Bond Component
Convected al Uc = a/vm _-- Frozen Pattern

: /Scaled Down

J J t m _ _/ t

0

FIGURE 11. CRUDE APPROXIMATION OF R_ BY
THE STANDARD CROSS CORRElA-

TION Rp BETWEEN THREE TRANS-
DUCERS ON OPPOSITE PANEL EDGES

to the standard cross correlation, Rp. Expressing
the decayed portion by the change between the auto
and cross correlations

R (O,'r - z m _/a) )P - Rp(_,T

one obtains an approximation:

R':_ (_,O,T)p --_ (1 - _a) Rp (x:O, y=O,_ : O, _, _'-'rm _/a)

(33)
+_R (x=0, y=0, _=a, _,T).

a p

Thus, the estimate of the special pressure cross cor-

relation requires only to change the crosswise sepa-
ration of three transducers, Figure 11.

In the vicinity of boundary layer separation and

reattachment lines, we cannot expect a constant con-

vection speed, Uc. However, an average speed was

already estimated by using tt_e 'largeSt _elSarati;Jn _'=a
between the upstream transducer t and the downstream.

transducer 2. It is hoped that the space average of the
standard cross correlation is reflected approximately

by taking the average convection speed instead.

The observed convected patterns of turbulence

often show that the ratio between convection velocity,

Uc, and the free stream velocity, Uoo, is often inde-
pendent of Mach and/or Reynolds number. In this

particular case, we can gather all the necessary in-
formation about convection speeds at a particular con-
venient combination of M and/or Re. For all other

operating conditions, the convection speed follows by

calculating the free stream velocity Uoo. The auto-

correlation function (or power spectrum) could be

obtained by scaling with the Strouhal number [22].

The concept of conveeted turbulence is therefore a

very powerful tool. It reduces both the number of cor-
relations and the number of Mach and Reynolds num-

bers that are necessary in a quick look procedure.

VI. TOLERABLE ERRORS

In the curve fit of a given cross correlation, it

has always been assumed that the statistical analysis

of the measured wall-pressure fluctuations is exact.

Inreality, the measured R_p values are only estimates
of a true value. The curve-fitting procedure gives

ambiguous influence coefficients as soon as the error,

dR' of an Rp estimate is equal to or bigger than the

root mean square error ( A2 R_) , between the esti-

mated Rp distribution and the approximation Rp which
was given in equation (26). The condition

<(A 2 R"_))½ (34)

should therefore be checked in each wind tunnel pro-

gram which tries to predict the autocorrelation of the

generalized forces, RF(m,n,_- ),by a curve fitof ex-

perimental cross correlations. The predicted R F

values are meaningful only ifthe condition of equation

(34) is met.

The true value of the even space-time correlation

function, R;"_:",was defined in equation (22). It is based
on an "ideaPi test" which meets the following require-

ments:

(1) The wall pressure fluctuations are a sta-

tionary and ergodic process [ 11].

(2) The pressure records are infinitely long

[ 23].

(3) The complex frequency response function
of the two narrow band filters and/or the time delay

is a Dirac function [ 24].
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' (' Tl_e transducers and all data processing
•elements are both linear and time invariant.

In the actual tests, all four requirements will be vio-

lated, and additional calibration tests are needed to

find the error j_

_R = [(A2 R* )1 + "" + (A2 R* )4] ½ , (35)

which accounts for' the accumulated deviations from

the "ideal test. "

The largest error is due to nonlinear effects and

time shifts on the data reduction chain. Contrary to

the other three errors, (A 2 R* )4 cannot be reduced

by a proper choice of the data reduction equipment
and/or repeated runs. This is, therefore, the error

which will ultimately decide whether or not the tests
are meaningful. Also, it is useless to make the first

three errors much smaller than the fourth. A good
choice for the tolerable upper limit of error mentioned
above would be

1
(A 2 R* )l -< 3 (A2 R* )4; I = 1,2,3. (36)

Anestimate of (A2R * )4 is now possible for a data re-

duction chain which is linear and time invariant enough
such thatthe amplitude dependence and the time shifts

of the frequency response function might be treated as

random disturbances. As an example, a data reduc-
tion chain is treated which consists of N = 6 elements.

= i Transducer

2 Transmission line

3 Tape recorder channel

4 Filter or time delay

5 Multiplier

6 Integrator

The average action of each element is now completely

described by its complex frequency response function,

H_ (co)=:IH_ (w)l eiq_ (_) (37)

The elements f = !, 2, 3, 4 arc used in pairs because

the pressures from the points j = 1 and k = 2 are

handled independently as indicated in Figure 8. For

each pair of elements, the cross-power spectrum of

the two inputs j and k is related to the cross-power

spectrum of the two outputs by

• k
Sjk(W)[out = H_(w)[H_(_o)]* • Sjk(W)]in

(38)

The cross-power spectrum of the output is equal to

the cross-power spectrum of the input multiplied by

the gainfactor and the exponential phase difference of

the two transmitting elements. This input-output re-

lation might be viewed as an extension of the power

spectral analysis of equation (9). The two equations
are identical if one demands that HJ(w) = Hk(w) for

all elements that transmit both pressures pJ and pk

simultaneously. In the above data transmission line

this happens at the multiplier and any following ele-
ment.

The output of the element I is the output of the

element I + i and the action of the complete chain is
therefore given by multiplying the factors of equation

38. Therefore,

Sjk(¢O)[ =output from averager

ii= g H_ - ¢_)"
Sjk(W) pressure I=1

(39)

Using equation 39itispossible to eliminate systematic

signal distortionsin the finaldata presentation. How-

ever, the gain factorsand phase shiftsof the individual

elements are known only within the statisticalerrors

AIH_I, A Hkl andA(_ - _k), which summarize the

effects of nonlinearity (amplitude dependent frequency-
response function), time variance (time shift of cali-
bration curves), and the errors that were inherent in

the calibration device used to measure response func-

tions H_ (w). For small and random derivations, the

accumulated error is then given by the error propa-
gation law:

N 2 +/'0 S..

(A2Sjk)4--_=_I /_01I-I_l AIH j+k _0_ j-k

2 2 -.2

(40)
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In presently available commercial data reduction

equipment, the biggest errors are introduced by dy-

namic phase shifts between transducers and between

the channels of tape recorders [ 24] . Relative mean

square errors of

[ (A2Sjk) 41½
20% (41)

ISjk (w)]

are to be expected even for carefully selected ele-

ments. It seems that nonlinear effects and dynamic

shifts in the transducer and in the data transmitting

elements are so big that the more refined force

estimates, which consider the spatial structure of the

pressure field, might lead to ambiguous results.

Equation (40)gives the error of a cross power

estimate in a form which is directly applicable to dy-

namic calibration tests. The wanted error of the

cross correlation estimate follows from a Fourier

transformation in time. This shows that the statisti-

cal errors will be of the same order of magnitude

whether the statistical analysis is done in the frequency

domainorinthe time domain. The error analysis and

the inherent demand for dynamic calibration are there-

fore quite general and not restricted to the cross

correlation technique. In future calibration programs,

one has to measure not only the "average" frequency

response function but the disturbances of the gain

factors and phase differences that are produced by

nonlinear and dynamic effects in the transducer, in

the data reduction chain, and in the calibration device.

Equation (40) could be used as a ba_s for a sur-

veyor optimum linear and time invariant elements and

calibration procedures. Measuring the standard de-

viations for the gain factors and phase shifts of each

data transmitting element, the smallest pressure

cross correlation could be calculated which is still

meaningful in acoustic wind tunnel tests.

VIII. CONCLUSIONS

Recent flight and wind tunnel tests indicate that

the skin of large launch vehicles might suffer a high

frequency vibration caused by flow separation and

oscillating shocks. This paper discusses the feasi-

bility of obtaining the aerodynamic forcing functions

at anearly design stage by a cross correlation of wall

pressure fluctuations, which have been measured on

rigid wind tunnel models.

The relation between generalized forces ,and wall

pressures is illustrated for the simplest of all cases,

the rectang_alar flat plate with simply supported edges.

All simplifying assumptions will be listed in a separate'

report and may be verified in future tests. A simple

excitation response relation is given which is valid

not only for the flat plate but also for all panel configu-

rations and all edge conditions, the free vibration of

which can be described by orthogonal modes.

The accurate prediction of skin vibrations re-

quires the power spectrum of the autocorrelation of

the generalized forces which act on the individual

modes. Their exact determination would lead to a

fourth order integration over the cross correlation

function of two transducers which are independently

moved across the panel. The experimental and nu-

merical effort in this exact solution is prohibitive and

simple models of the pressure field have to be tried

instead. The approximation with normal incident plane

waves and the assumptions of homogeneous turbulence

are reviewed. The first neglects the spatial structure

of the pressure field completely and the second might

lead to ambiguous results for high shear flows and/or

supersonic flows with boundary layer separation and

reattachment.

Unfortunately, the largest pressure fluctuations

are mostly associated with inhomogeneous flow. It is

shown that the force autocorrelations might be ob-

tained for inhomogeneous flows by a curve fit of a

"special" pressure cross correlation function. For

homogeneous turbulence, this curve fitting procedure

is equivalent to Allan Powell's spatial Fourier decom-

position ("joint acceptance").

The experimental and numerical effort of any

curve fitting procedure is still so large and costly that

it canbe applied only to very few cases where simpler

pressure models give marginal results. A quick look

is described which estimates the space-time cross

correlation by the use of only three transducers on

opposite panel edges. It is based on the concept of

conveeted turbulence and shows that only very few

Mach and Reynolds numbers are necessary in "quick

look" tests provided that conveeted turbulence is the

dominant noise source.

A curve fit of experimental pressure correlations

is useful only as long as the statistical error of a

cross correlation estimate is smaller than the numeri-

cal error of the curve fitting procedure. An analysis

of systematic and random errors indicates that non-

linear effects and dynamic shifts in the data trans-

mitting elements might produce relative mean square

errors up to 20 percent. The refined estimate of gen-

eralized force, which is based on the spatial structure

of the pressure-space-time correlation function, might

therefore lead to ambig_tous results. The pressure

, h

dL

J
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' ' '_ trdnsaucer'a_d [he data'reduction chain must be call- _ 11.

,, "brated very accurately not only for the time average

-frequency response but also for dynamic shifts of gain

factor and phases. Dynamic errors are particularly

severe in small pressure transducers and tape re- 12.

corders.
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ON AN EXTENSION OF OSWATITSCH'S EQUIVALENCE RULE TO UNSTEADY FLOW

By

M. F. Platzer

N65-2412 
SUMMARY Symbol Definition

This paper outlines an approximation theory for

the calculation of the linearized subsonic and super-

sonic flow around pulsatingbodies of low aspect ratio,

extending K. Oswatitsch's and F. Keune's theories for

steady flow to these unsteady flow cases.

Inafirst approximation, theflow around pulsating

bodies of low aspect ratio consists of two terms:

a. A two-dimensional cross-flow.

b° A spatial influence which depends only on the
sum of the source-elements over the cross-
section.

This spatial influence reduces the flow over puls-

ating low aspect ratio wings to the flow over the equiv-

alent pulsating body of revolution. A similarly char-
acteristic structure of the flow field is found also for

the higher order flow terms.

In addition to the basic conditions for linearization,

the range of validity of this approximation theory is

essentially bound by certain combinations of aspect

ratio, Mach number, and reduced frequency.

d(x,y)

E [n] (x,y, z)

U (i)
o

H (2)
o

i

k

K
o

L

m [n]

M

Amplitude of pulsation

Sum of source-moments of nth order
over the cross section

Hankel function of first kind, zeroth
order

Hankel function of second kind, zeroth
order

imaginary unit

wL
-U- reduced frequency

Modified Bessel function of second
kind, zeroth order

Characteristic length (wing-root,

body-length, wavelength of pulsation)

Source-moment of nth order

C

--, free-stream Mach number
c

Laplace transform variable

These order of magnitude considerations can be

further substantiated by comparing the approximation

theory with certain exact solutions of the unsteady

linearized potentialequation. Such solutions are fou_

for the infinitely long tube or ribbon puls ating harmon[-/]
cally in subsonic or supersonic flow.

LIST OF SYMBOI_

Symbol Definition

A Amplitude of cross-sectional pulsa-
tion

Q(x)

q(_,_)

r, 0

s(x)

Si

t

U

Amplitude of cross-sectional pulsa-
tion

Source -distribution

Cylindrical coordinates

Half-span of wing

Integral sine function

time

Free-stream velocity

Free-stream velocity of sound V(x) Definition equation 2.8

C

Ci

Euler's constant = 0. 5772 ....

Integral cosine function

x,y,z

(x

Cartesian coordinates Figure 2

O9

c(M+I)
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LISTOFSYMBOLS(Concluded)

Symbol Definition
50

OL T

c (i-M)

c(M-I)

cots

_(x,y,z, t) Disturbance potential

(x, y, z) Amplitude of disturbance potential

Cq (x, y, z) Cross-flow potential

_R(X) Spatial influence

2v
7 L Wave-number of pulsation

0J 0)

K c_2 ' c cot2_

_U ¢oU
C2/_2 ' c 2 cot2_

¢o Circular frequency

S

L ' reduced span

_, _ Source coordinates

I. INTRODUCTION

The problem of steady linearized subsonic and

supersonic flow about bodies of low aspect ratio at
zero and small angles of attack has been treated by M.

Munk [2], H. S. Tsien [3], R. T. _lones [4], G. N.

Ward[5], M. C. Adams-W. R. Sears [ 6], F. Keune-
K. Oswatitsch [ 7], [ 8], and M. A. Heaslet -H. Lomax

[ 9].

M. Munk [ 2] first recognized that the flow about

bodies of revolution at small angles of attack may be
considered two-dimensional when viewed in cross

sections perpendicular to the longitudinal axis. With

this idealization, the local lift distribution can be ob-

tained from simple momentum considerations. R.T.

Jones [4] later found that this concept also holds for

low aspect ratio wings. Garrick [ 10] and Miles [ 11]

finally could show that the Munk-Jones hypothesis of
two-dimensional, incompressible flow in planes nor-

mal to the flight direction retains considerable useful-

ness also for harmonically oscillating slender pointed

wings and bodies. Thus, the velocity potential bf _ne

transverse flow pattern satisfies in both cases, steady"

and unsteady flow, Laplace's equation in two dimen-
sions. However, for unsteady flow the condition of

sufficiently low reduced frequency must be fulfilled in

addition to the condition of very low aspect ratio. For
high reduced frequencies, the concept of two-dimen-

sional cross-flow may be extended to compressible

flow, the velocity potential satisfying now the two-

dimensional wave equation of acoustics [ 16].

Inall these cases there is only a cross-flow to be

considered reducing the original three-dimensional
problem to a two-dimensional one. This is an im-

portant simplification explaining the general use of this

slender-body concept in modern missile aerodynamics.

We want to turn now to the corresponding sym-

metrical steady and unsteady flow cases; namely, the

flow about bodies of low aspect ratio at zero angle of

attack whose skin may be stationary or execute time-

dependent breathing vibrations (pulsations).

The steady flow about bodies of low aspect ratio

at zero angle of attack has been treated by G. N. Ward

[5], M. C. Adams-W. R. Sears [6], F. Keune-K.

Oswatitsch [7] [8] a.o. This case proves to be more
difficult than the calculation of a lift distribution on a

lifting delta wing, according to R. T. Jones, or on a

lifting body of revolution, according to M. M. Munk.

The lifting effect corresponds to the effects of a dipole
distribution and produces disturbances only within a

short distance. Therefore, the influence of the parts

of the body in frontofor behind a given cross section is

of higher order and may be disregarded. In the non-

lifting flow case, however, the effectof body thickness

corresponds to a source-sink distribution producing

disturbances over a large distance. Considering the

incompressible cross-sectional flow alone, therefore,

would neglect the "spatial influence" of the parts of

the body in front of or behind this cross section. This
influence being of the same order of magnitude as the

cross-sectional flow has therefore always to be re-
tained in order to obtain a correct description of the

nonlifting flow about bodies of low aspect ratio.

Representing the wing by a source distribution,

the disturbance potential of the cross-sectional flow

is given by

I +s (x)
¢,(x,y,z) =_-_ f q'(x,7?) tn/(y-_)2+z2&7

-s(x) (1. l)

+ 0R(x).,

where q (x,y) isdetermined by the boundary condition

at the body, and CR(X) is an additionalfunction of x

whose meaning was not always clear in the literature

¥
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slender approximation (compare the dis-of" t_he body
• cussion in Ref. 6 ). Oswatitsch and Keune [7,8]

could show that this function is just the spatial influ-

ence mentioned previously and can be extracted from
the exact solution of the linearized potential equation

for low aspect ratio wings at zero angle of attack.

i fFf q(._,_?)d_ dr4_(x,y,z) - - 4_r v_x__)_. + flf'(y_7?)2+f12 z2

for M< 1

i

_b(x,y,z) - - 2_
f q(_,_?) d_ d_

S _/(x-}) -cot oz(y-_?)

(1.2)

2-co_2o_za

for M > i

After proper expansion of this double-integral with

respect to the source distance from the axis, two
terms are obtained. One is the cross-sectional flow

i.e., the first term in equation (t. 1); the other main
term reads

1 _ V(}) d_ ,_V2__n r
_bR(x'r) -- 47ro v_X-_) 2+flfr 2

for M <1

x-r cot c_

_bR(x'r)-- 27rl f / V(_) d_
o _/(x-_)2 - cot z a r 2

- V(x) lnr for M> 1
27r

( 1, 3a)

and reduces in the immediate vicinity of the body to

Lx

v__ln_ __1 0 fv(¢),n(x_¢)d¢+e-_-h 0---(V(_)_n(_-x)d¢
_R(x)= 2v 2 -4_ 7x o a_ OX_o

+ _ Ox v(_) in (x-_)d%
o

(l. 3b)

2 for M < 1
c

i for M > I

by a proper limiting process r ---0. The function V(x)

in equation (1.3) is defined by

+s(x)

V(x) =f q(x,_) d_. (1.4)

-s(x)

Thus, the spatial influence, equation 1.3, is depen-

dent only on the sum of the source distribution over

the cross section. It is easily interpreted as the dif-

ferenceof the potential of abody of revolution whose

source distribution is given by equation (1.4) and its
cross-sectional flow potential. The spatial influence

of a given low aspect ratio wing and the spatial influ-

ence of its equivalent body of revolution, i.e., that

body having the same total source strength in all cross
sections, therefore, are the same. Since the total

source strength is proportional to the cross-sectional

area, equivalent bodies are defined as bodies having

the same cross-sectional area distribution (Fig. 1).

•Z Q(x)

Y_ --Q(x)
z v, , Y

,r i i I i

__ x = Const.

FIGURE 1. LOW ASPECT RATIO WING AND ITS

EQUIVALENT BODY OF REVOLU-

TION

These considerations led Oswatitschto the postulation
of an equivalence rule for both the linearized subsonic

and supersonic flow regimes and the nonlinear trans-

onic region which he first communicated at the VIIIth

International Congress for Applied Mechanics [ 12] in

1952. At nearly the same time, experimental investi-
gations on equivalent bodies in the transonic range

were oarried oht by R. T. Whitcomb [ 13]. His main
interest was in finding bodies of low drag; he arrived

in this way at the equivalence concept by noticing that

the shock waves in the transonic range become axisym-

metrical in a rather short distance and that they tend

to become of the same shape as the shock waves of the

equivalent body of revolution. These results are

generally known as the "area rule. "

2. EXTENSION OF OSWATITSCH'S EQUIVALENCE
RULE TO PULSATING FLOW

We want to extend now the work of Oswatitsch and

Keune to unsteady flow and consider a wing of low

aspectratio in linearized subsonic or supersonic flow

whose skin performs a symmetric harmonic pulsation
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(Fig. 2). 1 We mention that the problem is identical

to the problem of a vibrating low aspect ratio panel

embedded in the xy-plane, which is of considerable

interest for panel flutter investigations.

u_[zel

I_ y

Cross Section

/ ' I

\

\
x

x = Const.

FIGURE 2. SYMMETRIC HARMONIC PULSATION

Assuming harmonic pulsation, we may write the dis-

turbance potential _ (x, y, z, t) in the form

i¢ot
_(x,y,z,t) = _(x,y,z) e , (2.1)

and, similarly, the pulsation amplitude

ic0t
D(x,y,t) = d(x,y) e (2.2)

We assume the pulsation amplitude to be zero at the

edges of the wing,

d(x,s(x)) =d(x,-s(x)) =0,

and restrict ourselves to the first pulsation mode sym-

metrical to the xz-plane.

Within the framework of linearized theory, the

problem is entirely determined by the exact velocity

potential equation (2.3a) for subsonic flow,

M<I:

_(x,y,z)

_iK_](x__) 2+f12(y__?)2+f12z2

__ 1 f fq  ,n)e
4_ F _/(x-_) 2 + f12(y-7))2+/32z2

(F = wing projection area)

and by equation 2.3b supersonic flow

M>I:

eig(x-_)
d_ dT]

(2.3a)

¢(x,y,z)

= _--I (fq(},_) cos[_ _/(x__)2_cot2c_(y__)2_cot2a " z21 -_ig(x-{) d_ d_

27r JS J '(_x-_)---2 - cot2---_ (y-_---_ 2-cot2-----_ z-_

(S : area cut out by the upstream Mach cone)

(2.3b)

As is well known in steady aerodynamics (e. g., Ref.

1,pp. 498 and 514), the source distribution can be

expressed also for pulsating flow by the normal ve-

locity on the wing surface,

q(x,y) = 2 w(x,y,o), (2.4)

where w(x, y, o) can be related to the pulsation ampli-

tude by means of the linearized boundary condition on

the surface of the pulsating wing:

ad_x,y)
w(x,y,o) = ± [io_d(x,y) +U ax ]" (2.5)

The evaluation of the double integral equation

(2.3) for arbitrary plan forms, frequencies and Mach

numbers can be achieved only by tedious numerical

integration. Therefore, an approximation theory will

be developed which generalizes the approach first

given by Oswatitsch and Keune for the case of steady

flow [7, S].

Since the coordinate y of a source element on the

wing areais always small compared to the root length

L, we may write for the velocity potential (considering

first only subsonic flow)

4P

8'-

°

l The author wishes to thank Professor K. Oswatitsch,

Vienna Institute of Technology, Austria, for his sug-

gestions and encouragements.

-b_/'_X-_) 2 + h'2(y2ez 2)
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, , • . , ,

wl_erb

1 [- - _e-i_,/'_x-_)2 _ .2(y.__1)2 __ j_2 z 2

Ao(x.y.z) -_-.FJ x,(_ _1) L,/(x-_)2+P'2 (v-_7)2+P2z2

_(X__) 2 + I_2 (y2 + z 2)

(2. 7)"

Foi large distances from the wing A_ (x, y, z) will

become negligibly small compared to the first term

in the expansion and the potential becomes with

+s(x) +s(x)

f q(x,,7) d_ 2 fV(x)

-s(x) -s(x)

for r : _/y2 + z 2 _

w(x,rl) dr/ iwQ(×) + U Qx(x) (2.8)

L V(_) e-ia¢ x-4)2+ [32 r21
e Lu(x-_) d_

O(x,y,z) :-4_r J0 _/(x-_)z + fi2 r2 (2.9)

where

+s(x)

Q(x) = 2 f d(x, 7?) dT?
-s(x)

(2.10)

is the amplitude of the cross-sectional pulsation of

the wing. For points near the wing, however,
A_(x,y,z) is of equal order of magnitude as the first

term in the expansion. Here the term x-g approaches

zero; therefore the term y-_? has an important influence

on A _b(x,y, z). The main influence of this second term

can be taken into account, however, by replacing the

variable source distribution w(_, _?) by the source dis-
tribution at a given cross section _--x; thus

A0(x,y,z, :-_-1+) (x) w(xJ))_? (rl) (( _-iK_l(x-_)-2:fi2(y-_):+-_2_z2

.......... e i_(x-_) d cbl

_x-_: _2(y2÷727

If we make now the further approximation that instead

of integrating from the leading edge XL(_) to the trail-

ing edge XT0?) we extend this integration in the inner
integral ofequation 2.11 to -¢o and +oo , then a
closed form solution is obtained:

A0(x'Y'Z) =2_::i w(x,_)IH_2)(f"J(y-_)2+z2)-H(o2) (-_/y-y'_-_+z2)Jd}?.

(- 12)

There remain two terms K 1 and K_. [ 14] whichcanbe

shown to be of higher order. Hence, the final result

can be written in the following form:

M<I:

. +s(x)
2

-s(x)
d_ + O R (x,y,z), (2.13)

where

1 jLv({) e -i_ q(x-_)2+/?2r2-- e ip(x-_) (1_CR (x'y'z) : - 4n
o "_'(x-_) _ + 9 r 2

i ii(2) (._)- _ v(x) r •o

(2.14)

We mention without proof that a similar approach for

supersonic flow leads to [ 14] [ 15]

M>I:

i +_.(x-r cot a)

_(x,y,z) :_ J
-s(x-r cot _)

w(x-rc°tu'rl) H(2)(_'_7)d_?+OR(x'Y'Z)'o

(2.15)

where

i x-r cot

_r, ( V({) cos [. _(x-_) _ - cot 2 _ • r 2 e-ig(x-_) d__R(x,y,z) : -..
o 4(x-_) a- cot 2 _'r 2

-4 V(x-rc°tcO tt(2)o (_r)

(2.16)

Hence, the induced flow field consists of two potential

flows, a two-dimensional flow satisfying the Helmholtz
equation

O9 2

_byy + _zz + c-_ _) = 0) (2.17)

and being induced by the source distribution equation

2.4 plus athree-dimensional flow being induced by the
source distribution equation 2.8. This flow is identi-

cal with the flow around a pulsating body of revolution,

equation (2.9) with equal variation of the cross-

sectional pulsation, along the X-axis. Comparing
equations (2.13) and (2.15), it is seen that the two-

dimensional flow is the same for subsonic and super-

sonic flow. The spatial influences _bR (x, y, z) equations
(2.14) and (2.16) are different, however, for subsonic
and supersonic flow and represent the influence of the

parts of the body in front and behind a given cross

section. They are obtained, as in the steady flow case

[ 7], by subtracting from the potential of the pulsating
body of revolution its cross-flow potential.
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Of particular importance are velocity and pressure

distribution on the wing surface. These quantities can

be obtained from equations(2.13 - 2.16*)by a limiting

process z _ 0, r _ 0. Then we obtain immediately for

the cross-flow in subsonic and supersonic flow

i H(2)
0q(X,y,z) =_ f w(x,_) o y-_ d_,

-s(x) (2.18)

and after some manipulation for the spatial influences,

where a 2 = (y-H) + z 2.

Integration by parts and proper expansion gives in a

first order approximation for the potential function of

the pulsating wing in subsonic flow

q $6p(x,y,z) = _ (x,y,z) + q_R(X) (2.22)

• +s (x)
_bq(x,y,z) =1 f

-s (x)

w(x, 7) In _ (y__)2 +z 2 d_

(2.22a)

M< 1:

_R (x) V(x) (_ C i a_x _ C, F_L___ - il? + i Si _Ic(_M 1,tTr c(l+i) Uc(l-M) .j i-

,[_7) , _ v(x)-v(_) e -._(_-_)+islLc(>M)j _4_ o ×- _ c(1+M) de

t ? v({) - v(x) _ d_-- e -1 c (l-M)
-4r, _ -x

o

(2.19)

_-- _ j V(t ) c -i c(1-M) In (_t-x) tit 2r, 2 "

.la _)x 1 -IViJ x

(2.22b)

M> 1:

_11(x) (-Ci w_l_Ci I "_}1 - ir_ + i S i wI_ 14_ (2.20)

x w x ' _ x -_

+ ._, \c c(M-1) _c c(M _l)]d_
+ i Si 4_ - x -

where Ci and Si are the Integral Cosine and Integral

Sine Functions. This approach which was rather based

on physical considerations about the main influences

upon the flow field can be supplemented by two other

mathematically more rigorous approaches. For this

purpose, we generalize a method first used by F.

Keune for the steady flow problem [18] and rewrite

the potential for the pulsating wing equation (2.3a) in'

the form

27r 0(x,y,z) :I I+I 2 (2.21)

x

11 - f/w({,,I) e -i_'' (x-_)a _ ,,2 a 2 ei_(x__) . _x /n Ex-{ + _ (x-_) 2 +. fla aa]d{ dr 1
o

(2.21a)

L

i, Jj w({,rDc -b''q(x-{)2 + /3a aa ei'_(x-_)s __ln/__x +x({_x)a+0_ fia aa'] d_d,}

x Ox L

(2, 21b)

The second approach can be obtained by generalizing

the Adams-Sears method [6] to pulsating flow. We

show this for supersonic flow and use, therefore,

Laplace transformation
oo

-_(p,y,z) = f e -px 0(x,y,z) dx.

O

transforming the potential equation into

_-yy + _zz - k2-_ = O, (2.23)

where

iwU 0) 2

k 2= cot 2 a • p2+ 2--_-p--_ • (2.24)

A proper solution of this equation is

+S

--_(D V ) 1 f_(p,_) Ko (ha) d__._,_,z =--
7r

-s

(2.25)

We are looking for a solution near the body and ex-

pand, therefore, the modified Bessel function with

respect to its argument

K0(ka)=- C- ln?+{ka)2 I1-C'?1+4 ....

(2.26)

C = Euler's constant.

Retaining in a first approximation again only the linear

terms gives after inversion for the potential function



of'the' pulsating wing in supersonic flow_

_(x,y,z) = _'q(X,y,z)+ _;_(x) (2.27)

1 +s (x)
_b'q(X,y,z) =-Tr f

-s(x)
w(x,_) ln_/(y__?) 2 + z 2 d_?

(2.27a)

fO 1 c _ X _i_:X_

1 0 +_ V(_) e c(M-I) In (x-_) d_.
- 4_ o

(2.27b)

Equations 2.22 and 2.27 show that these ap-

proaches lead to different definitions for cross-flow

and spatial influence, the cross-flow being again the

same for subsonic and supersonic flow, but satisfying

now the two-dimensional Laplace equation.

Itcan be shown that the representations, equations

(2.18) - (2.20) and equations (2.22) - (2.27) are

equivalent, this being quite an_dogous to the different

forms found in steady flow (compare M.D. van Dyke,

Second-Order Slender Body Theory: NASA TR-R-47,

equations 7 and 8).

It is also easy to verify that, for vanishing fre-

quency, F. Keune's solutions for steady flow are ob-

tained (equations 2.10, 3.10, 4.1 and 4.2 in Reference

8).

_milarly, a further limiting case for M = i can

be obtained [ 14], [ 15]. For the transonic flow case,

however, the frequency must be kept sufficiently high

in order not to violate the assumption of linearization.

Summarizing our results, we have folmd that the

flow near the body can be considered two-dimensional

in every cross section and is easy to be calculated

from the Laplace equation

_byy + _zz = 0. (2.28)

Hence, the disturbance potential is

1 _s (x)
¢(x,y, z) =27

-s(x)

a.

+ ¢'_(x)•

_(x,_) In ff (y-_) _ + z2 dT?

(2. 29)

As in the stationary case& the solution is dependent on

an additional function _biR(x), namely the spatial in-

fluence. Generalizing Oswatitsch's and Keune's

conception,we have obtained for this spatial influence

(b*R(X) _2Tr |n\/--LM2--2 i[ _ _77 0 e_ V(_)e -_ c(I+M) In (x-_) d_

.±

+ ¢-1 (__D_ l c _ !_ " _ In U,-x) d_
4-'_-_ k_0x 1-MJ . V(_) c -1 c(1-M)

I c e-i
+ 42 0 + h_T-1 V(%) c(M-1) In (x-_) d_,

o

(2.30)

where _= 2for M< l

i for M> i .

Having essentially replaced a solution to the com-

plete linearized unsteady potential equation

I U2) 2U 1- -J Cxx + Cyy + _bzz - c--2"¢xt - c-_tt = 0_
(2.31)

by a solution of the Laplace equation (2.28), the fol-

lowing restrictions have to be imposed in addition to

the conditions for linearization (cf. J. W. Miles, The

Potential Theory of Unsteady Supersonic Flow,

Cambridge 1959).

I1 - M2[o 2 << 1 kM 2 o2<< 1 k2M2o 2<< 1_ (2.32)

where k is areduced frequency and a ameasure of the

lateral extent of the wing.

We want to mention that the range of validity of

the solution can be extended by keeping the higher

order terms of our expansion of the velocity potential.

This can be done in generalizing Keune's method for

steady flow [ 17], [ 19] or generalizing the Adams-

Sears procedure [6]. Keune's method is physically

more appealing, however, showing that the higher

order flow terms are built up by certain higher order

moments of the basic source distribution.

We remember that in our first approximation we

needed:

a. The local source distribution q(x,_)

b. The sum of the sources over the cross section.

+s(x)

V(x) = f q(x,_) d_?
-S I .._

We introduce now after Keune [ 12] also for pul-

sating flow the higher order moments of these quanti-

ties, namely _

m In] (x,y,z,_) = q(x,r_) a n = q(x,r_) [ (y__)2 + z212

(2.aa)
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andthesumof thesesourcemomentsoverthecross
section

+s(x) n
E[nl (x,y,z) = f q(x,_)[(y _ _)a + za]7

-S(X) d_.

(2.34)

The significance of these quantities can be seen from

Figure 3

U

\

, • , P _-Cross SectionI,,
, .

y--" \

x = Const.

a _

FIGURE 3. PHYSICAL SIGNIFICANCE OF'

SOURCE MOMENTS

PS = distance of a point P in the cross section

x = eonst, from a source-,element at point S.

It turns out that also the higher order terms of

the expanded velocity potential of the pulsating wing

equation[2.31can be interpreted as a generalized cross-

flow and a generalized spatial influence if instead of

the local source distribution q(x, 71) and its sum over

the cross section V(x) the higher order moments

m[ n] and E[n] are used. A more detailed discussion

is given in [14, 15]. Thus, a relatively simple

theory is obtained for pulsating bodies in compressible

flow which extends appreciably the range of validity of

the first approximation equations(2.29)and(2.30).

Furthermore, it should'be' men{idnecl here tt_a_

these developments for the pulsating wing can be used •

to obtain another and quite elementary approach to

"quasi-slender body theory" for oscillating wings and

bodies of revolution which gives some new insight to

the basic structure of the flow field around oscillating

bodies, too [ 14] [ 15].

3. Comparison With Exact Solutions

The usefulness of the approximation theory de-

veloped in the previous section can best be assessed

by comparing it with exact results. There are con-

figurations for which exact solutions of the linearized

unsteady potentiai equation can be found. We mention

the infinitely long pulsating tube and ribbon.

Consider first a tube of small diameter whose

axis coincides with the X-axis and whose flexible wall

executes apulsation of wavelength L. We assume this

wavelength to be large compared to the diameter of
27r

the tube. The wave number of the pulsation is 7 - L

and the subsonic or supersonic flow is aligned to the

tube, i. e., in the direction of the positive X-axis

(Fig. 4).

=-U

R0

FIGURE 4. INFINITELY LONG PULSATING TUBE

The spatial influence equation(2. 19)for subsonic

flow simplifies for the infinitely long pulsating tube to

[ 14], [ 15]

M< 1: 1 ? q(X)x_q(_)e_iW(x-_}_bR(X ) =-_ _ c(1-M) d_
_09

1 _ q(_) - q(x) e-iW(_-x)
-_ c(1-M) d_ '

47r f _ x
X

(3.1)

Inserting the appropriate source-distribution for the

pulsating tube leads to the following final form for

this spatial influence with A as amplitude of the cross-

sectional pulsation:

¢

r
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% ' 4'

= _y. cos 7 x in _ + _ " sin 7 (sln 7 x - x /4

I_ "_I

f ol+ i sin 7 x in - + cos 7 x /4 7 = F<

&>7-"

+ sin 7 x - sin 7 x _ /4

+ t sin 7 x In -

+ _ cos
4x 7 x in - - sin y x

+ i _I sinyx In _ -_ cos 7 x +

cos Y

L
£

+ cos 7 x In - + sin y x /4

U] > 7

l

_' = 7 - _ cos 7 x in

_>Z> I

J2 y > U' !I

cos 7 x <_/4 ? = 7_'

[0

/4 7 =5

&>7

/2 2 > 7 > i]

× 14 g! = 7

7 >C<'

7 = JJ

?<' > 7 i

ic IO/2 _' > 7 > 0

+ i os 7 x ( 14 _' = 7

7>J ' -_0

- _ cos 7 x - _ sin 7 x in

(3.2)

where

(._ 09

-_- c(I+M) and _' - c(I-M) " (3.3)

A similar expression is obtained for supersonic flow

[14, 15]. We note that ¢R(X) = 0, fort = 0. If the
wavelength of the standing pulsation is infinitely large,

i.e., the tube is pulsating with constant amplitude

over the tube Length, then there is no spatial in-
fluence. In this case, sources ,'_ .... * -* ........

are distributed over the entire x-axis, and as is well

known, a solution is givenby the cross-flow, i.e., the
cylindrical solution. There is a spatial influence,

however, for non-zero T, which may even become in-

finite ifoneof the matching conditions T = a or T = a'

• is fulfilled, i.e., if the wavelength of the advancing

or receding acoustic wave coincides with the wave-

length of the standing tube pulsation.

To find an exact solution for this case, we have to

extend the limits of integration in equation (2.9) and
to insert the proper source distribution, thus obtaining,

for M < 1,

--+_ e i_(x-_) d_A f [i w sin T _ + Uy cos T_] e -iK Q (x-$)2 +_2 r 2

_(x,r) : - 4_ - _ q (x__)2 + Z2 r 2
(3.4a)

for M > 1
+ x-r cot

A i _ sin _ + U T cos _ _] cos I_(x-_) 2 - cot 2 _ r2]. e-iP(x-_) d_._(x,_) =-_ f I
-_ 4(x-_) _-cot 2_. r _

(3. 4b)

An evaluation of these integrals is possible [ 14,

15] and leads to the following closed form solution:

A e - iTx
A_ (w +y U) c iTx Pl (r) - _(-_9 +_/ U) P2 (r)_/O(x,r) _- St,

(3.5)

with

Pl(r) =-i_H (2) [rfiq(_+7) (oF-T)] a'>yo
(3.6a)

:2K [rfi4(-d+_)(T-_') ] a'<T 9
O

(3.6b)

P2(r) =- i_H (2) [rfiq(_- 7) (_'+7) ]_>w
O

(3.6c)

= 2K [rfl4(T--_) (a'+T) ] _ < 7
0

(3.6d)

for subsonic flow,

and

(2) Jr cotPl(r) =- i_H °

P_.(r) = - iv H (2) [r cot _ 4 (-_-y) (_"-V) ]
0

(3.7a)

-ff>'7

CP'> T

(3.7b)

= i_r cot _4 (T--if) (T-_")-17 >

= 2 K[r cot 4 T >

0 O_" > 7

for supersonic flow.

,/

(3.7d)
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This solutionfor the infinitelylongpulsatingtube"
whichwehaveobtainedheredirectlyfrom thepotential
equation(3.4) canbe foundalso accordingto R. W.
LeonardandJ. M. Hedgepeth[20] byconsideringfirst
thesolutionsfor travelingwavesandcomposingthem
to thestandingwavesolution.

We mentionwithoutproof thatproperexpansion
of theexactsolutions,equations(3.6) and(3.7), with
respectto the argumentandretainingonlythe linear
termsleadsto equation(3.2), thusprovidinga quanti-
tative checkon the rangeof validityof this solution
[14, 15].

A further interestingexactsolutioncanbefound
for the infinitely long pulsatingribbonof constant
width. Assumingsinusoidalpulsationover the x-
direction,thechordwiseintegrationagaincanbecar-
ried outwhichreducesthedoubleintegralto a single
integraloverthefunctions,equations(3.6) and(3.7),

which had already been obtained for the axisymmetric
case. This solution appears to give good approxima-

tions for the aerodynamic pressure distribution on
fluttering panels of high length/width ratio. Thus, a

relatively simple aerodynamic theory might evolve for

panels of length-width ratios comparable to those oc-

curring onSaturn V panels. This problem area is now

under detailed study.

C ONC LUSIONS

An approximation theory has been developed to
calculate the linearized subsonic and supersonic flow

around pulsating bodies of low aspect ratio which

generalizes the theories of K. Oswatitsch and F. Keune

[7, 8, 17, 18, 19] to unsteady flow.

The flow around pulsating bodies of low aspect

ratio consists of two terms, a two-dimensional cross-

flow and a spatial influence which depends only on the
sum of the source elements over the cross section.

A similarly characteristic structure of the flow
field is found also for the higher order terms by intro-

ducing after Keune [ 17] higher order source moments

and the sum of these quantities over the cross section.

In addition to the basic conditions for lineariza-

tion, the range of validity of this approximation theory

is essentially bound by sufficiently small aspect ratio,
Mach number, and reduced frequency, so that

cr x/ I1-M2{< 1 kMcr < 1

is fulfilled.

These order of magnitude considerations qan be" _

further substantiated by comparing this approximation

theory with certain exact solutions of the unsteady
linearizedpotential equation. Such solutions are found

for the infinitely long tube or ribbon pulsating harmoni-
cally in subsonic or supersonic flow.
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, . ..... , _,. __"ONTHEPRESSUREREQUIREMENTSFORSTRUCTURALRESPONSEEQUATIONS
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N6s :4 36
SUMMARY

Richard D. Rechtien

DEFINITION OF SYMBOLS (CONT'D)

The fluctuating pressure requirements for the cal-

culation of flight vehicle vibration environments are

reviewed in light of the development of a "lumped" im-

pedance approach to the response problem. This re-

sponseapproach demonstrates that the only fluctuating

pressure information required is the pressure cross-

power spectral densities.

For homogeneous anisotropic flow conditions, a

considerable simplification in the response equations

;;:: l:u r ::; t:::p oil:: c 2;:_ tti}sl it i£s:? ig2;:: d:h:: ti__ /

reduced to a more elementary form. )_\_

DEFINITION OF SYMBOLS _,_v
7_

Symbol Definition

H(Y, s, w) Structural transfer function

HCf, -_, w) Wave number spectrum of the
structural transfer function

F(_, t) Applied sinusoidal force at the

point -s

U s (Y, t) Structural response at _ due to the

applied load at -_

_s (¥) Phase difference between the re-
sponse at r and the applied load at

A (_)
S

P(_, t)

Magnitude of the response at
due to a sinusoidal load of unit

amplitude applied at-_

Fluctuating pressure acting at the

point s

R (_)Aw
R

Narrow-band response coherence
function

PSD (g, w)
P

CPSD ('s, "s: w)
P

Pressure power spectral density

Pressure cross-power spectral

density

Symbol

PSDR(r , w)

Co(s, s', w)

Quad(-s, _', w)

Mp(k, w)

z(w)

r

W

Aw

6

t

i

AA

U
0

f
0

C

Definition

Response power spectral density

Co-spectrum-the real part of

CPSD (s, s', w)
P

Qua&spectrum-the imaginary

part of CPSD (3,_', w)
P

Wave number spectrum of CPSD

(-_, -g: w) P

Point impedance function

Orthogonal surface coordinates

Position vector for the response

measurement point

Position vector for the load appli-

cation point

Circular frequency

Frequency bandwidth

Vector wave number

Wave number bandwidth

Separation vector

Time

4--:7

Incremental surface area

Free stream velocity

Center frequency

Wave velocity

Coincidence vector wave number

c
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"_" I. INTRODUCTION

The structural integrityof presentdayflight ve-
hiclesdependsto alarge degreeontheaccuracywith
whichone canpredictthedynamicstresslevelsthat
thestructurewill endureunderoperationalconditions.
Suchstresslevelsare derivedfrom theanticipatedvi-
brationalenvironment,whichin turn is deducedfrom
availablefluctuatingpressureinformation. Theac-
curacyof thepredictedstressenvironment,therefore,
merely reflects the adequacy,or inadequacy,with
whichthedynamiccharacteristicsof thestructureand
thecharacteristicsof thefluctuatingpressurefieldcan
be described. Thesecharacteristicsareultimately
coupledbymeansofamathematicalformulismto pro-
duceanenvironmentalresponsecalculation.

Underoperationalconditions,theflight vehicleis
subjectedto a widevariety of dissimilar fluctuating
pressureenvironments,of whichthosethatfall within
thebroadclassificationsof engineaerodynamicnoise
andinflight aerodynamicnoisesustaina positionof
great importance. Now"noise"is a wordwhichhas
manymeanings;thus, it is importantthatit shouldbe
clearwhatthewordis to meanin thepresentcontext.
Here, noisewill be regardednot just as"unwanted
sound"butassomethingmoreexplicit, a randomdis-
turbance,andwill includethoseprocessesor experi-
mentsin which the results fluctuate irregularly.
Honce,noisein thepresentcontextrefersto pressures
whichfluctuaterandomlyintime.Randomness,onthe
otherhand, is a less restrictivephraseandmaybe
extendedtodescribcalsothespatialdistributionofthe
fluctuatingpressuresin thattheyare irregularly dis-
tributedandthis distributionis unpredictable.Thus,
the term "random," as usedin thepresentcontext,
refers to processeswhereboththetimefluctuations
andspatialdistributionareunpredictable.

Thecommonfeatureof all "noise"environments
experiencedbytheoperationalvehicleis thattheyare
random,both in spaceandtime, andtheassociated
measuredpressurequantitiescanbeconsideredonly
inastatistical sensein an"average"sortof way. As
theexcitingpressureenvironmentis random,soalso
is thestructural response,andagainstatistics come
intoplayin its description.

Variousstatisticalmeasuresoffluctuatingpres-
sure andresponseconstitutean input-outputsystem
in whichthe proportionalityfactor is referredto as
thestructural transfer function.Thisinput-outputre-
lation can attainanydegreeof complexitydepending
onthedegreeofrigorwithwhichoneattacksthe prob-
lem, and the format of pressure and structural

information. For a statistical responseapproach,
the calculatedresponsequantityis a matterof per-
sonalchoice. Onemay, for example,beconcerned
withthemean-square,autocorrelation,cross-corre-
lation, powerspectraldensityor cross-powerspec-
tral densityofeithera displacement,velocity,accel-
erationor strain. Thechoiceof measureof apartic-
ular responsequantitydependson the needsof the
responseanalyst. Thechoiceof thestatisticalpres-
suremeasurerequiredfoi_thecomputationof response
is, however,notquitesoarbitrary; butyetit is inde-
pendentof the desiredstatisticalresponsemeasure.
Thatis to say, regardlessof the desiredresponse
measure,the formatof therequiredpressureinfor-
mationremainsthesame.

Thethirdnecessaryresponsequantity,thestruc-
tural transfer function,is alsoarbitrary to a degree
in thatits form dependsonthechoiceof themannerin
whichonecouplestheexternalexcitingpressureto the
structure. It is restrictedin thesensethatit must
act as a unit conversion system which changes the

units of pressure to units of response. In this regard,

it is dependent to a limited extent on the desired re-
sponse measure, but it is quite independent of the for-

mat of the required pressure information.

The foregoing statements concerning response

equations are notquite true ingeneral, for if one views

the familyofallied response forms that have emerged

in the past few decades, he finds that in most cases

the structural transfcr function is intimately connected

with the pressure distribution. However, if one also

scrutinizes the derivation of those response relations

which do not conform to the foregoing statements, he

will also find that these response relations are merely

degenerates of a rigorous approach (as they must be)

where the intimacy of the pressure distribution and
transfer function has resulted from a specialization of

either the statistical pressure quantities or the trans-

fer function independently orby a simplification of the

combination of these quantities. Thus, the statements

of the preceding paragraph are essentially true only

if the response approach is rigorous in the sense that
specialization to a particular structure or pressure
distribution has not been made. These statements are

precisely valid if in addition one can state that the mo-

tion of the vibrating structure yields no reaction to the

exciting pressure field thereby modifying its charac-
teristics. We are speaking now of small lateral dis-

placements of a structure. For example, the magni-

tude of the displacement caused by aerodynamic noise

is of the order of a few percent of the boundary layer

thickness (Baroudi et al., 1963).
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The conditions,of smMlness of the lateral dis-

placements of the structure come into play also in the

development of the response relations. It is always

desirable that the structure be linear; that is, its mo-

tion should be describable by a linear partial differen-

tial equation, so that the principle of superposition

may apply.

For a linear structure and for conditions of small

displacements, a rigorous approach to response cal-

culations allows the response problem to be conven-

iently separated into two independent areas of interest:

structural and aerodynamic research. Although ulti-

mately the results of investigations within these two

fields of interest must be combined in some iashion to

produce a response calculation, the structural and

aerodynamic information can be obtained from quite

dissimilar investigations. Thus, the value of rigid

model wind tunnel experiments becomes evident, as

also, dynamic testing on full scale vehicles, or seg-

ments thereof, using nonaerodynamic exciting sources

(i.e. , electromagnetic vibrators). In this way, the

structural analyst has at his disposal the necessary

pressure information from wind tunnel tests which may

have been designed for an entirely different purpose.

This paper undertakes to describe the complete

response problem from a semi-intuitive point of view,

in contrast to a strictly mathematical approach. This

is to demonstrate the relative role of fluetuatingpres-

sure information in the response problem. It will also

be shown that, for a given format of structural and

pressure information, the response problem can be

considerably reduced to a rapid, accurate, and prac-

tical calculation.

The first part of this report considers the struc-

tural transfer function in a way that is compatible with

recent trends in structural experimentation. By ap-

proaching the problem experimentally, one is led in-

tuitively to the exact response equation. The second

part of this paper considers the external pressure field

to be spatially homogeneous. This assumption allows

the response equation to be readily reduced to a prac-

tical form.

A rigorous derivation of the results of this method

will be published in a paper by the author (Rechtien

1964) •

II. DEVELOPMENT OF THE RESPONSE RELATION

The attitude taken in this approach to the response

problem presupposes that the structure in question, or

a dynamically similar model, materially exists and

can be subjected to physical experimentation• Of

immediate interest is a func'tion it(_% -s, _v) whlc'h" deo-

scribes the transfer of vibrational energy from a point •

g-toapointYonthesurfaceof the structure. In order

to demonstrate the interpretation of this function, its

physical measurement will first be described.

Consider any typical vehicle structure for which

the position of any point on its surface is expressible

by an orthogonal set of surface coordinates (7, _ ).

The veetor-_ (7,/?) represents the loeationatwhich a

force, F(g, t), is applied and r(7,fl) represents the

position vector where the response Us(_,t) to the

applied load at-_ is measured (see Fig. 1).

U (i:, t)

0 r s

FIGURE 1. COORDINATE CONFIGURATION

The force, F(-s,t), applied at-g, shall be con-

sidered to be a sinusoid of unit amplitude and circular

frequency w,

iwt
F(_,t) = e (1)

which is being continuously monitored by some force

measuring device. At location ¥ on the surface of the

structure there exists a response detector, for ex-

ample, a velocity pickup, which also is continuously

being monitored. It is then assumed that a sLffficient

length of time has ellapsed since the initial application

of the load so that a steady-state condition exists. The

amplitude of the response at¥, A (_), and the phase

difference, C_s(-_), relative to the _0ree at g, are then

measured. The response at _ can then be related

to the applied force at g by the input-output relation

_- iwt
U (_,t) = H(r,s,wle , (2)

S

where the transfer function H(r, s,w) is given by

H (Y,-s,w) = As(7) ei(bs(_) (3)

and shall have the units of response quantity per unit of

force. The inverse of this function is generally re-

ferred to as the transfer impedance function. This

function reflects, implicitly, the totality of those mech-

anism s which act to modify the vibrational energy be ing

transferred along many paths through the structure t(,

the point of measurement. When the point of measure

ment and the position of the applied load coincide, that
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t

' is, wnen r =g, then (Y,g,w)]

•welt-known point impedance function.

reduces to the

Having now discussed the physical measurement

of the structural transfer functions, an analogous prob-

lem with a higher degree of complexity shall be con-

sidered. Let the force applied at_ be, in actuality, a

pressure P(-s,t) acting over an incremental area AA

of the surface. Further, itis supposed that this pres-

sure is not sinusoidal but a stationary* , ergodic_ ,','-
random function of time. Next, itis supposed that this

random pressure fluctuation is being continuously

monitored by passing the signal from the pressure

transducer through a filter with a very narrow band-
width of center frequency, w. The resulting signal

would resemble a sinusoid in that the zero crossings

would tend to be regular. However, the amplitude of

the signal would be quite random. The response at r

due to this filtered portion, P(s,t)Aw, of the total
pressure, P(_,t), acting at_ is given a_proximately by,

Us(_,t)Aw = H(Y,_,w) P(-g,tJAwAA, (4)

where H(T,g,w) has the same meaning as equation

(3), and the subscripts refer to narrow-band filtered
quantities.

Suppose now that at another point s' of the struc-

ture a second pressure P(W,t) is simultaneously ap-

pliedover an incremental area AA'. Its narrow-band

contribution to the response at $ is given by

Us,(_,t)Aw = H(¥,-g;w) P(-g; t)Aw AA'. (5)

The question now arises as to the degree of co-

herence between the narrow-band vibrational energy
at _ arriving from the two different sources. We are

essentially asking what degree of similarity exists be-
tween the two narrow-band response signals, or al-

ternately, what is the degree of dissimilarity due to
the difference in transmission paths and due to the

difference in phase and amplitude between the two

sources. A measure of the degree of coherence be-

tween the two response signals, considered as being

separable, is given by the time average of the product

of the narrow-band response signal of one times the
complex conjugate of the other,

-* One implies by the condition of stationarity that the

statistical measures of P(_, t) are invariant with re-
spect to time translations.

:._* The ergodic hypothesis implies that if a given ex-

perimentwere repeated a number of times under con-

stant conditions, the results of any one such experiment

would be representative of the ensemble.

RR(-r)Aw = narrow-band response coherence
function

+T
tim 1 l" *

T_m 2T _# Us(¥,t)AwUs'(¥,t)Awdt , (6)

where (-':-") designates the complex conjugate of the

correspondingquantity. The complex conjugate of the

response function is necessary since the response co-

herence function is required to be real.

Substituting (4) and (5) into (6) one finds that

- -, (lira I +T _ _ ._
RR(Y) Aw = H(r,s,w) H + (r,s ,w) _.T_ _ f P(s,t)&wP*(s',t)&w dt AA AA'.J-T

(7)

The bracketed quantity is just the narrow-band

pressure coherence function between the spatial points
(-s,g'}, andmeasures the degree of similarity between

the two filtered pressure signals. To be more con-
sistent with the current literature, this function Shall

be referred to as the pressure cross-power spectral

density, CPSDp(-S,g',wj. Similarly, the product of
the transfer functions, H* H, can be considered as a

measure of the similarity of the two different trans-

mission paths. Thus,

RR(r)Aw = H(r,s,w) H* (r,s',w)

response transmission path
sim ilarity sire ilarity

CPSDp(S,S',W) AA AA' .

pressure
sim ila rity

(8)

Now the response coherence function is a statis-

tical measure andobviously deals with pairs of quanti-

ties. In practice, one is always faced with pressure

fields thatare continuously distributed over the entire

surface of the structure. Obviously, one could then

speak of coherence functions, or cross-power spectral
densities, associated with an infinite number of pres-

sure pairs, each pair generating a distinct narrow-

band response coherence function at the point of meas-
urement. The sum of all of these distinct narrow-band

response coherence functions is nothing more than the

narrow-band mean square response at the measure-
ment point Y. This measure is commonly referred to

as the response power spectral density

PSDR(r'w) = _'RR(r) Aw

all pairs

(9)
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Thus, by summing the response coherence functions
at r from all possible filtered pressure pairs and pass-

ing to the limit as the incremental areas AA, and AA'
become small, the following integral is generated,

PSDR(_,w ) = f fH(_,_,w) H;,' (r,s',w) CPSDp

A A'

(_,_",w) dAdA', (1o)

where the integrations are to be taken over the entire

structural surface.

The power spectral density of the response at a

given point of the structure is the quantity most desired

by the response analyst. Therefore, inessence, equa-

tion (10) is the fundamental response formula. The
fact that the power spectral density of response is here

presented in integral form presupposes that both the

transfer functions and the pressure cross power spec-

tral density are known as continuous variables of the

spatialcoordinates. For practical structures, the de-
termination of such transfer functions for the total

structure would not be practical. However, one

generally finds that local stiffening elements, such

as ring frames in flight vehicles, considerably re-
strict the transfer function to have non-negligible

values only in relatively localized areas. Thus, such
structural elements would limit the integration of (10)

to local regions of response significance.

The continuously distributed pressure fields which
one deals with in practice not only fluctuate randomly

in time, but are randomly distributed in space. That

is, if one were to measure the instantaneous pressure

along a profile on the structural surface, the instan-
taneous pressure value at a given position could not be

predicted from knowledge of the instantaneous pressure

valuesatwell separated points. However, such a pro-
file would constitute a continuous pressure curve.

Without being at all rigorous, the idea of continuity is
that the instantaneous pressure curve should be smooth

from one position to the next. Consideration of this

leads to the conclusion that the instantaneous pressure

at a given position is dependent to a certain ex-
tent on the instantaneous pressure at adjacent posi-

tions. Intuitively, if at one position a large positive

value is recorded, a large negative value will not be

recorded at an adjacent point at the same instant. That

is, the instantaneous pressure s at adjacent points have

a high degree of similarity, or dependence. Butas
the interval between the two observed positions is in-

creased, the dependence between them clearly de-

creases, andif the separation interval between the ob-

servationpositions is large enough there will be prac-

tically no dependence, or correlation.

.... %. ', , ,:
We are here speaking of the total pressur_ field.

But the same arguments wouldhold true for the narrow-
band filtered components. Thus, the pressure cross-

power spectral density is actually a measure of the de-

gree of dependence of the narrow-band pressure com-
ponents at two different locations on the structural

surface. Such dependencies give rise to characteristic

curves for the pressure cross-power spectral density,

as shown in Figure 2. The pressure cross-power

1.0

0

-_.5

5 = separation distance

Co-spectrum U ° = free stream velocity

.... m f _ center frequency

fo d

I 11.0 115.5 . 0.8U o

FIGURE 2. NORMALIZED CROSS-POWER SPECTRA

FOR SUBSONIC ATTACHED TUR BU-

LENT BOUNDARY LAYERS (AFTER

HARRISON 1958) .

spectral densityis by its very nature a complex quan-

tity and is generally represented in terms of its real

and imaginary parts,

CPSDp(-s,-s',w) = Co(_,_',w) + i Quad(_,-s',w), (11)

where Co and Quad are referred to as the co- and

quad-spectrum, respectively. These are the quan-

titiesshown in Figure 2. The decaying character-

istics of these curves reflectthe degree of dissimi-

larityof the narrow-band pressure compon¢nts at ad-

jacent positions. For subsonic turbulent boundary

layer fluctuations,Harrison (1958) shows that theco-

and quad-spectra fall to less than one-half of their

peak value for a separation distance of

U
o (12)

O

where U o is the free stream velocityand fo is the cen-

ter frequency of the filteredquantities. For separa-

tion distances of twice this length,the magnitudes fall

towithin 10percentof the peak values. Thus, for sub-

sonic flows, the pressure fluctuationswithin a turbu-

lent boundary layer are correlated only over distances

ofa few feet for intermediate frequencies. For super-

sonic flOWS, Kistler and Chen (1962) show that the

distances overwhich the pressures are correlated are

reduced by an order ofmagnitude as compared to sub-

sonic flow conditions. For other flow characteristics,

such as separation and oscillatingshock phenomena,

the correlated regions may be increased by an order

of magnitude as compared to their turbulent boundary

layer counterparts. But the point is that all of these

pressure fluctuationsare only correlated in localized
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regions of the structural surface. Moreover, such

areas of correlation are generally of an order of mag-

nitude smaller than those areas defined by the previ-
ously discussed regions of response significance.

Therefore, in general, the effective area of integration

of the response relation (10) will be governed by the
area of correlation of the fluctuating pressure distri-

bution. Since this area is small, as compared to the

total area of the structure, the response relation as

given by (10) is not as formidable as it may first

appear. However, even though the transfer function

and the pressure cross-power spectral density may be

known pseudo-analyticallywithin this area of correla-

tion, the evaluation of a double integration over this

area may still not be practical. Thus, an alternate

form of the response equation which would allow a

rapid and accurate means of estimating the vibrational

environment would be most desirable. However, to

simplify the response relation as given by (10) one

must idealize the external fluctuatingpressure field to

a limited degree. In particular, the pressure distri-

bution must be taken as having a homogeneous charac-
ter; that is, its statistical measures must be taken to

be invariant with respect to a spatial translation. Such

will be assumed in the following section, the conse-
quences of which will yield a more conservative esti-
mate of the vibrational environment.

IH. THE RESPONSE RELATION FOR HOMOGEN-

EOUS, ANISOTROPIC PRESSURE FIELDS

In the development of the response relation (10),

quantities of time were essentially transformed (by
narrow-band filtering) to the frequency domain, thus

giving rise to spectral quantities. In this section a

further transformation shall be applied, primarily for
the purpose of eliminating the area integrations of

equation ( 10).

The pressure-cross power spectral density, as
given in (10), is a function of the spatial locations,

(_-,_), at which the narrow-band filtered pressures

are compared. As a consequence of the assumption of
homogeneity, this function is no longer dependent on

the spatial locations, butonly on the separation vector

6 = S- s' , (13)

That is, the pressure-cross power spectral density is

assumed to be invariant with respect to a translation

so that the magnitude and direction of the separation

vector is preserved. The pressure cross-power spec-
tral density can then be written as

CPSDp(_,_',w) = CPSDp(5,w) . (14)

Now, just as a function of time may be decom-
posed into a spectrum of elementary waves in the fre-

quency domain, so can a function of separation be de-

composed into a spectrum of spatial waves in the

wave-number domain. Thus, the wave-number de-

composition of the pressure cross-power spectral

density is given by the Fourier integral relation
(Powell, 1958),

CPSDp = f Mp( ,w)eik'  , (15)

where dl_ represents the differential area, dkTdkfi, in

the wave number domain, and the integral over k ex-
tends over all wave numbers.

Physically, by this transformation, the external

pressure fieldisconsidered to be made up of a super-

position of harmonic traveling waves of amplitude Mp
(k,w). Now the frequency generated by a particular

wave as it is convected past a particular point in the

flow will be equal to the scalar dot product of the vec-

torwave number kand the velocity-5 of the elementary
wave

w= k . u (16)

If all of these elementary waves were traveling

with the same velocity, then there would be only one

vector wave number, or essentially only one wave,

whichwould generate a given frequency at a fixed point

in the flow by nature of its convection. Since the pres-

sure cross-power spectral density is defined for only

one frequency, this would imply that it was composed
of only one wave andwould not have a wave number de-

composition such as ( 15). In this case, the pressure

cross-power spectral density would have the form of

a non-decaying spatial sinusoid, which contradicts the

availablg experimental results (see Fig. 2 or Wills
(1963) for example). This contradiction leads one to

the conclusion that the velocity of the elementary har-

monic traveling waves is not constant, but assumes a

broad spectrum of values for fluctuating flows in gen-

eral. This is a mostimportant point, as shall be dem-
onstrated, in the estimation of vibrational environ-
ments.

If the transform relation (t5) is substituted into

equation (10), it can easily be showr_:-" that this re-

sponse relation can be transformed to an integral rep-

PSDR(LW) : f Mp(K,w)IH(r, ,w)! 2 d ,(17)

* For a similar treatment, see Powell (1958).
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where H(r', k, w) is the two-dimensional inverse Four-

. ier transform of the structural transfer function,

1 -ill (-g-Y)
H(_,_,w) - 47r2 f H(Y,_,w) e dA" (1_8)

A

Equation (17) is the basic form of the response

equation for homogeneous flow conditions. The pro-

perties of this relation shallnot be discussed, and the

relative advantage of this wave-number representation

should be clearly evident.

IV. PROPERTIES OF THE RESPONSE EQUATION

In the previous section the structural transfer

function, as well as the pressure cross-power spec-

tral density, was transformed into the wave-number

domain. By this representation, the instantaneous

deflection of the structural surface due to "the appli-

cation of a sinusoidal force (which the structural

transfer function essentially describes) is considered

as a linear superposition of structural surface waves.

Now the structural transfer function is experimentally

determined at a given forcing frequency, w. The

structural waves that will be excited by this distur-

bancewill be those for which the scalar dot product of

the structural vector wave-number and velocity of pro-

pagation (i. e. , the materialvelocityof sound) is equal

to the forcing frequency. The velocity of sound in the

material will not vary greatly in the structure, and

therefore only a few structural waves can be excited

at this frequency. In other words, the wave-number

spectral representation JH (r, k, w) J 2 will be extremely

peaked, as shown in Figure 3 for the one-dimensional

case. This spectral distribution may exhibit more

than one peak as in the case when the material speed

of sound changes drastically across a surface discon-

tinuity.

FIGURE 3. WAVE-NUMBER SPECTRUM OF THE

STRUCTURAL TRANSFER FUNCTION.

The wave number spectral representation of the

pressure cross-power spectral density, M (_,w),

possesses a similar distribution as shown i_ Figure

4. This curve was obtained, for the purpose of illus-

• tration, by transforming the curves of Harrison given

in Figure 2. Since the co-and quad-spectra are char-

acteristically damped cosine and sine curves,

cross-powe_ _ " 'respectively, the transformed ' ' spec_ri_m

will generally exhibit the character of Figure 4: But

the relative peakedness of this curve will depend en-

tirely on the fluctuating pressure conditions.

FIGURE 4.

k.--_

WAVE-NUMBER SPECTRUM OF THE

CROSS-PANEL SPECTRUM

Since the product of the two peaked spectral func-

tions, Mp(k,w) and JH(_, k,w)J 2, comprises the:inte-

grandof the response relation, equation (17), the de-

gree of similarity between them will determine the

magnitude of the response power spectral density.

When the peak values of the two distributions occur at

the same wave number, a coincidence condition will

exist. Coincidence is defined as that condition for

which the dominantpressure wave vector and convec-

tion velocity for a given frequency match the structural

wave vector and the velocity of sound in the material.

This condition is illustrated in Figure 5A. For this

coincidence condition, the response integral of equa_

tion (t7) can be accurately approximated by evalua-

ting the integrand at the coincidence value-k c of the

distributions and multiplying by an appropriate band-

width of integration,

PSDR _ 167r 4 Mp(kc,W ) J H(7,kc,w) j 2 Ak . (19)

In Figure 5B, another hmitingcase is considered

where the peak value of the pressure spectral distri-

bution falls well below that of the structural spectral

function. In this case, the structural spectral function

can be considered constant once the effective band-

of integration and the integral (i5) approximates to

PSDR _ 167r4j H(_,kp, W)J 2 _ Mp(k,w) dk. (20)

The integral of (18} is defined as the power spectral

density of the pressure at the point r, PSDp(r,w).

Therefore, equation (18) reduces to

16_r t ,,Jn(_'_p'W)[2 PSD , _21)PSD R P

which yields the response for forced oscillations (non-

resonant conditions).

Figure 5C illustrates the reverse situation in

which the peakof the structural spectral function falls

well below that of the pressure spectrum. In this
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_rca_e',"tL essure spectrum can be considered as

.constant over the effective bandwidth of integration and

the integral (17) approximates to

PSDR _ t6_4 Mp(ks,W) flH(r,_,w)J 2 _. (22)

The integral of (20) is simply the inverse of a point

load impedance Z (w), and equation (2R) reduces to

PSDR= 167r4 Mp(ks'W)Z(w) (23)

This condition corresponds to the limiting case in

which the narrow-band pressure fluctuations at adja-

cent points on the structural surface are completely
uncorrelated.

JH(r, _, w)J 2

k k-.l,
a

A. Coincident conditions

a_

<

A.M (k, w),', ,
/\" P ',--]H (T, _, w) I

k k-I_
P

B. Nonresonant conditions

[H (_, k, w)[ 2

!,,1 A __

• • l# Ill

k k.-_
S

C. Uncorrclated pressure conditions

FIGURE 5. LIMITING CASES OF THE SUPER-

POSED WAVE-DISTRIBUTIONS

Bothof the limiting cases given by equations (21)

and (23) will yield a negligible response relative to a

near-coincidence condition. In practice one should

generally encounter a degree of coincidence lying

somewhere in the intermediate regions between pure

coincidence and the above limiting cases. One must

then rely on intuition to make a reasonable approxi-

mation. But the real advantage in specifying the wave
number distributions of the structural transfer function

and the pressure cross-power spectral density lies in

the fact that the degree of coincidence, and therefore

the degree of response, can immediately be deter-
mined by inspection of the superposed distributions.

A quick estimate of the response level could thenbe

obtained without requiring a rigorous evaluation of the

response integral.

V. CONCLUSIONS

An attempt was made herein to provide a basic

understanding of the re sponse problem, to demonstrate

the relative role of fluctuating pressure information,

and to show that, for a particular format of structural

and pressure information, the response problem can-

not only be entirely separated into two completely in-

dependent areas of experimentation but also can be

considerably reduced to a rapid, accurate, and prac-
tical calculation.

A dynamically scaled model of the Saturn V ve-

hicle is now being fabricated at the Langley Research
Center. Experimental programs to determine the

structural transfer function for this model would yield

the necessary structural information required as input
to the response equation (17). This information, a-

long with wind tunnel pressure data for rigid models,

would provide, by using the response relation given

herein, the means for obtaining a good estimate of the

in-flight vibrational environment.
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NONLINEAR TWO-DEGREES-OF-FREEDOM RESPONSE WITH

SINUSOIDA L INPUTS

By

Robert S. Ryan

SUMMARY

The study of a forced vibrational system is very

difficult if the system is nonlinear. This becomes ap-

parent because the principle of superposition does not

hold as it does for linear systems.

In studying the behavior of linear systems, it is
useful to deal with sinusoidal inputs and resulting out-

puts which are harmonic. By definition the complex

ratio of the output to input is called a transfer func-
tion. This transfer function, since it is complex, can

be written as two parts: the modulus and the argu-
ment. The first describes the so-called response

curves, and the second the phase angle between the

two harmonic oscillations. Because of the property of

superposition inherent inlinear systems, these trans-
fer functions become the basis for a complete discrip-

tion of the system.

In the nonlinear system, the output of the system

to sinusoidal inputs is no longer sinusoidal, but con-

tains harmonics of both higher and lower frequencies.

Neither does the superposition principle hold; there-

fore, a study using sinusoidal inputs does not yield the

wide scope of information obtained in the linear case.
There are other shortcomings in studying the system

using sinusoidal inputs; nevertheless, the sinusoidal

input functions provide a convenient way of studying

the nonlinear system.

This analysis proposes to solve the nonlinear
forced oscillation of a vehicle using air springs for

vibration isolation. Both a single and a two-degrees-

of-freedom system will be studied where the force

applied is considered to be sinusoidal in nature. The

single-degree-of-freedom system is also solved in the
free vibration state using phase plane methods.

I. INTRODUCTION

The isolation of machinery against vibration or

outside excitation has long been a goal of engineers.

The problem was first attacked by linearizing the

problem. In studying the behavior of linear systems,

it is useful to deal with sinusoidal inputs and resulting

outputs which are harmonic. By definition the complex

ratio of the output to input is called a transfer function.

This transfer function, since it is complex, can be

written as two parts: the modulus and the argument.

The first describes the so-called response curves,

and the second the phase angle between the two har-

monic oscillations. Because of the property of super-
position inherent in linear systems, these transfer

functions become the basis for a complete description

of the system.

The study of nonlinear systems cannot be attacked

in this simple manner. In the nonlinear system, the

output of the system to sinusoidal inputs is no longer
sinusoidal, but contains harmonics of both higher and

lower frequencies. Neither does the superposition

principle hold; therefore, a study using sinusoidal in-
puts does not yield the wide scope of information ob-
tained in the linear case. There are other shortcomings

in studying the system using sinusoidal inputs; never-
theless, the sinusoidal input functions provide a con-

venient way of studying the nonlinear system.

The Ritz-Galerkin averaging method is presented

as an ideal method for solving nonlinear problems.

Most solutions given in literature solve simple systems
which are nearly linear in nature and have odd re-

storing forces, and therefore present no real difficul-
ties. The Ritz method can be used to study highly

nonlinear restoring force systems that are general in
nature.

II. BASIC METHODS FOR SOLUTION

There is usually considerable advantage in finding

an analytical solution for the governing differential

equations of a physical system when it is possible to

do so. The solution is obtained in algebraic form and

oftengives basic insight into the system. If, however,

no insight is available from the algebraic form itself,

then the equations are in a form suitable for paramet-

ric, numerical studies, thus leading to a detailed look

at the system.

The basic method presented is the Ritz Averaging

Method. It is avery powerful method applicable to beth
autonomous and nonautonomous systems. The method

will not satisfy the differential equation point by point,

but will satisfy it only in some mean or weighted

average.
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arrive attheRitz condition,it is bestto start
• with tie variationalproblemsincemanyproblemsin

engineeringandphysicscanbeformulatedasa mini-
mumproblem. The solutionis thenonethat gives
someintegralexpressiona minimumvalue.

To begin,let F0?,77,t) beacontinuousfunction
where77and_?arethefunctionsof time; then

t
I = fF(_, _, t) dt

t
O

(1)

has some meaning.

The problem now is to choose _ (t) such that I is

a minimum. This is done by variation of 77(t). If _(t)
is a neighborhood function of _ it), then

_(t) = _?(t) + e Y(t),

where e is a small arbitrary number and Y is an ar-
bitrary function.

This is a problem of calculus of variations, and

the extremum I may be obtained by letting

f Y+ 7
t

O

dr= 0.

The main idea of the Ritz method is to let extre-

mum I depend on a finite number of parameters only,

by approximating _(t) by a function _(t), where

n

_(t) = _ _i _i (t)"
i=1

(2)

Then _i(t)'s are known functions, and _i's are coeffi-
cients to be determined. The problem is now to give
I a minimum value when I depends on a finite number

of parameters. Minimizing the functional integral I

with respect to the undetermined coefficient _i leads
to the following n equations:

t

OI -= OF ¢i +_-- dt = 0. i = 1, 2 .... n.
0ai to (3)

Inte_rating_ the second term h._jp_-+_-._ yields

t

0I _fi 0(_' d__.F 1 I¢ __F]tl=0. (4)
Oc_i t -dt _i dt + i Or1_]to

0

If the second term vanishes for the limits t o to t 1 - this

can be accomplished by proper choice of ¢i - then

t
1

0I 8F d 8F

8-_ - f _-_-_8--_ ¢i at=0" (5)
i to

In the braces are Euler equations or the differen-

tial equations of the system. Therefore,

t
1

f D(_) ¢idt= 0 (6)
t

O

is the minimum problem with D(_) the differential
equation of the problem. It coincides with the Euler

equation of the corresponding variational problem

written as a function of the assumed function in equa-

tion (2). However, this equation will not vanish at
every point as the Euler equation does. This method

has, however, the advantage of operating with the dif-

ferential equation and not some expression I; in fact,

I does not have to be known if the differential equation

is known. The weight functions correspond to the co-

ordinate function of equation (2).

The procedure for solution of nonlinear equations

is now straightforward and contains the following
steps:

First, assume the approximate solution

[1

_(t) = _ ai _i(t)"
i i

(7)

Second, solve the integrals

t i

fD(_) @idt=0. i=l, 2 .... n

to

(8)

Third, solve the resulting algebraic equations for the

coefficients ai"

The obvious disadvantage of the method is that some

idea of the nature of solutionisnecessary for choosing

the weight functions. Otherwise, too many terms will

be necessary to get accurate results.

111 A pDl 1C A TI_,T ,_w _w n_n _r,............... _ ......... A SPECIFIC
PROBLEM

A. DERIVATION OF BASIC EQUATIONS DE-
SCRIBING SYSTEM

w
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To illustrate the use of the Ritz method, the re-

sponse of a traveling vehicle to sinusodial force inputs

is chosen where the spring is an air spring. Both

single and two degrees-of-freedom are studied.

The first step in describing the characteristics

of the system is to derive the expression for the re-
storing force of an air spring. This is accomplished

by assuming that adiabatic conditions hold for the gas

(air); therefore, the characteristics of an air spring
under the influence of a load can be determined using

the relationship between volume and pressure in the
form

p V Y
0 0

V - , (9)
V'Y

where Vo and Po are the equilibrium volume and pres-
sure of the gas column in a cylinder at static equili-

brium, V and P the displaced volume and the corre-

sponding pressure, and y the ratio of specific heats.

Let x be the displacement of the piston from

equilibrium; then the volume at any displacement x is

V(x) = Vo - AoX, (10)

where A o is the cross-sectional area of the cylinder.

If lo is by definition the height of the piston from
the bottom of the cylinder at the equilibrium position,
then

V =Al
0 0 0

Substituting the foregoing equation and equation (5)

into equation (4) yields the pressure as a function of

the displacement as

(11)

The following diagram depicts the above defini-

tions and coordinate system.

m [--_ Yoloci ty

FIGURE 1, THE SINGLE-DEGREE-OF-FREEDOM
SYSTEM

The total force acting on the pistion, sinc_it'is
evenly distributed, yields

oo (12)

Since the weight is balanced by part of the totalforce,

the weight of the mass must be subtracted from the

total force to get the restoring force. By definition,

w = mg = Po Ao; thus, the restoring force becomes

o o - - . (13)

The restoring force as derived is of a general nature

and is valid for each spring of the two-degrees-of-

freedom system and the single-degree-of-freedom

system. Figure 2 is a plot of the restoring force as a
function of displacement.

u .-
.,Io _70 _j.____ _-

f; A.

FIGURE 2. COMPARISON OF CURVE FIT TO

ORIGINAL RESTORING FORCE FOR

7=1.4

The equation of motion reads, by usingequation (13),

mx+ PoAo _ x+l_(t) - = 0.
O

Dividing (14) by m and assuming that

(14)

x(t) + _(t)
= _(t) (15)

O

yields

$
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° [(i ': - i]= ° sin St, (16)

where

J° Fo

o ml
o o

and

o

o

(17)

where Wo is the undamped natural frequency of the
linearized and transformed system. The time is

t = S/v in which v is the traveling velocity of the ve-

hicle. Equation (11) is then the basic equation of

motion for a single-degree-of-freedom vehicle with

an air spring.

A two-degrees-of-freedom system should ade-

quately represent a traveling vehicle if the system is

considered to have two air springs sinusoidally forced

with a phase lag between them. The following diagram

depicts the system.

j.
$

FIGURE 3. THE TWO-DEGREES-OF-FREEDOM

SYSTEM

In the diagram,x is the displacement of the center of

gravity of the system, and q_ is the angular rotation

about the center of gravity.

The equations of motion can now be written as

m_ + Rl(x D + R2(x 9 = 0

I_ + _ Rl(xl) - ]3 R2(x2) = 0,

(18)

(19)

where

m = vehicle mass

I = moment of inertia of vehicle mass about

center of gravity

Rl(xl) = restoring force on piston 1

R2(x2) = restoring force on piston 2

X 1 = total displacement of air in piston 1

x 2 = total displacement of air in piston 2

_+b=L.

Since xi and x 2 were defined as the total displace-

ment of the air column from equilibrium, their re-

spective definitions become

x 1 = x + H _ + _(s) (20)

x 2 :x-b_v + _(s + L), (21)

where s is the displacement along path and L is the

distance between the pistons.

By using equations (13),

tions (18) and (19) become

-7

X+kl Ill -x+a'cY +_(s) I - _

(20), and (21), equa-

-T

+k2 I(1-x-b_ +_(s+L))_ -1_ =0
2

(22)

-7

1 1
-3'

-k4 I_-x-b(P+_(s+L) )12 - 11=0'

(23)

where

Pl A1
k 1 - m

P A
2 2

k2 =- m

(24a)

(24b)

k 3 -

k 4 -

K PIAI

I

I_PA
2 2

(24c)

(24d)
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Now letting and

x +_ + _(s)
zl = _ (25a)

1

x-b_ +_(s+ L)
z2 = _ (25b)

2

_(s) = _o sin at (25c)

_(s + L) = _o sin (at + _) (25d)

in which the phase lag _ can be determined in terms

of the vehicle velocity v and its length L, equations

(17) and (18) yield

• - L 'Y - 1-]1_ zl + _'_ _ _.2 + -_-- kl [(1 - Zl) -
.J

I 1

L -7 [22 To+r- [(1- z2) 1]:-
1

-aa2_ ° sin (_2t+ a)

sin at

(26)

= - _22 _o _sin _2t (b +g cos (_) + _ cos S2t sin cy-]j

z 1

Lk

-7- +-7- [(I- - -z2)
I i I

a2_ ° sin (_2t + _)=- sin at + t22_o

= _22_o [sin _2t (cos a- 1) +cos atsin o_,

(27)

where

_o

1

(28)

13. SOLUTION OF EQUATIONS

To solve the nonlinear forced response (equa-

tion (16)) by the Ritz method, a solution is assumed

for _. This solution must contain a constant term

since the restoring force is not symmetrical about the

71-axis. This leads to

: M+ Q sin t2t, (29)

where M and Q are constants to be determined. Since

a--_ (1) = Q cos r O (30)
O

OF 1 27r 1 2rrsin _- = Q cos _" sin _" = 0,
_O O

(31)

conditions (46) of the Ritz method then yield

2_

f D(_) dr = 0
O

27r

f D0? ) sin_- dr :: 0.

O

(33)

Replacing the second term of equation (11) by a

power series yields

{_ +_2 2ai _i =_ t22_ sin t2t. (34)
O O

The coefficient a 1 is equal to l, and the a o coef-

ficient is zero since the curve must pass through the

origin. Using the approximated differential equation

(60) leads to two algebraic equations in M and Q, the

simultaneous solution of which gives the forced re-

sponse. These equations are, if the series is cut off

as the 5th power,

8(aiM +aaM _+aaM 3 + a4M4 _ asM 5) + 4(a 2 +3a3M +

+ 6a¢M 2+ 10a5Ma)Q2 + 3(a4 + 5asM ) Q4 : 0 (35)

-r2(-_o _ Q) _-(a i _ 2a2M _.3a3M2 __4a4M 3 e 5asM_)Q3

3 5 Q5 36)
+ _ (a3 + 4a4M + 10a5M2) Q3 ÷ _ a5 : 0 (

where

r 2 a 2
- CO2

O

(37)

To solve these equations, the method of steepest

descent was used. The results of these equations are

shown on Figures 4 and 5, and show the response in

absolute maximum amplitude denoted by g versus the

frequency ratio with the force amplitude as parameter.

When _o equals zero, the backbone curve, or fre-

quency, as a function of amplitude appears.

It can be seen that the system first softens for

small amplitudes and then hardens for larger ampli--

tudes approaching a constant value as the frequency

increases.

A jump in amplitude will occur at any point where

the slope of the amplitude curve is infinite. By ob-

serving the amplitude curve, it is seen that, as the
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frequency r'_tio is increa[ed, a jump in amplitude will

occur giving large amplitudes of oscillations. Starting

with a large frequency ratio and decreasing the value

will first give a jump of increased amplitude and then

a jump to a lower amplitude. It seems advisable,

therefore, for the natural frequency of the system to

be above the forcing frequency by a factor of two or

three to maintain a low response value.

C. TWO-DEGREES-OF-FREEDOM SYSTEM

Equations (26) and (27) described the basic

equations of motion of a rigid two-degrees-of-freedom

vehicle. These equations are again nonlinear.

To solve the nonlinear two-degrees-of-freedom

system, a polynomial of fifth order will be used to

represent the restoring force function of equations

(26) and (27); therefore,

-7 I = z i+ 2+ 3 + 4 + 5 (38)(1- zi) - a2z i a3z i a4z i asz i.

This leads to

2 _.. _.Lg _, + _- a z 2 + K, Ezl + a2z _ + aaz_ + a4z_ + a5z_
1 1

L
+ FK2 Ez2+ a2z + a3zl+ a,zl+ asz ]: (39)

1

- _2_ ° Esin _t(ti + _ cos _) + _ cos _t sin (_.

_'1 - _ _'2 + iL---K3 Ez1
1 1

+ a2z _ + a3z]+ aaz41+ asz_

L

- _-- K 4 Ez2 + a2z _ + asz_ + a4z42+ asz_=
I

(40)

_2To _in _t (cos c_ - 1) + cos _t sin c_.

Again the Ritz method is applied. Since the sys-

tem has nonsymmetric restoring forces, and the

forcingfunctions have both sine and cosine terms, the

assumed solution takes the form

_. = M. + Q. cos _t + R. sin _t. (41)
I I 1 1

Substituting equation (41) into equations (39) and (40)

leads to the differential equations in terms of the as-

Application of the Ritz method yields the following

six integrals:

27T

_fDi(zi) dr = 0
O

2_

f Di(zi) cos dT= 0T

O

i = 1 and 2 (42)

i= i and 2 (43)

27T

f Di(zi) sinT d_- = 0
O

i = 1 and 2, (44)

where Di(zi) are the differential equations with the

assumed solution (41) applied.

Applying equations (42), (43), and (44) gives the

following set of nonlinear algebraic equations for the

coefficients Mi, Qi, Ri"

2 V

E2 + 2M_a2 + 2M_a3 + 2M4ia4 + 2M_a5 + a_.Q_
_' _li Mi
i=l

3 4 ÷ 3 a4R4 i+ a_Ri2 + 3a3MiQ _ + 3a3MiR2 i + 4 aaQi

2 2+ 6a4Mi2R2 i+6 2 2+ 15 4+ 6a4MiQi 4 a4QiRi _ asMiQi

__154 4 10" a_3_2 10 . a_3o2 30 2 _2 =0+ asMiR i + '_5.... _- + + a5MiQiR
.3

(45)

K2i M i • + _- a2Q i
i=l

3a4Q4 i 3a4R4 i+ a2R_ + 3a3MiQ_ + 3a3MiR_ + 4 + 4

2 2+ 6a4M_R_+ 6 2 2 15 asMiR4 i+ 6a4MiQi 4 a4QiRi + -4-

+ 1__55asM.Q. 4 + 10asM.3Q.2 + 10asU3R. 2 + 30 a M n_-,_-a

4 l I i i i I _ 5 i'_i_'i_ TM

(46)
2 2

_2[- _ AliQi+ _o (b+ac°s _+_ -- [Qi=1 " 1 Kli i

+ 2a2MiQi + 34 a3Qi3+ 3a3M_Qi + 3 a3QiR_ + 3a4MiQ _

+ 2 + 15 asQ5i 30 _-3+ 4a4M3iQ i 3a4MiQiR i _-_ + _-asMi_ i

5asM_Q i +30 2 2 +_55 4 + 10 3 __
4 a5MiQiRi 16 asQiRi _-_ asQiR _- 0

(47)
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2 2

+ 2a2MiQ 1 + 3 a3Q3i + 3a3Mi2Qi + 3 a3Q.R. 2 + 3a, M.Q.3• 4 4 1 1 1 1

+ 4a4M'3Q'I1 + 3a4MiQiR_ + _15 asQSi + ___ asMiQi30 2 2

+ 5a_M_.Q2. +___. M2_ _,2+ _6 4+ 10 3 21z I 4 "_5 i'_i_ i asQiR i -_ asQiR i

= 0. (48)

_22 A_. R. +-- sin + _,-- +2a2M.R.11 1 a _o Kii i 1 1

+ ._ a3Ri+3 3 3a3M_R i + 43 a3Q.2R"l 1 + 3a4M1"R3"I+ 4a4M3"R'l1

15 asR5i + 30. M2_, 3 + 5asM4.R.+ 3a4MiQ_R i +-_ -_- "_5 i_i I I

30 22 1o 0÷_ + + _-

4 asMiQiRi -_ asQiRi 1 lj
(49)

_2 aziRi - -_o sin + _' K2i i + 2a2M'R'
i 1 1

3
+ --3a,R3. + 3a3M_R i + 4 a3Q.2R ' + 3a4M.R3. + 4aaM3.R.

4 1 1 1 1 1 1 1

15 asR_i+30 2 3+ 5asM4.R+ 3a4MiQ_Ri + -_ -4- asMiRi I i

30aM2_2 n +10 2 3+_6asQ_Ril=0 '+ _- 5 i_i_i -_ asQiR i (50)

where

_11 =

KI2 -

]_II -

K2_ =

L PlAiT

lm

L P2A27

m
1

L_PIA TI
£ I

I

-L]gP A T
2 2

£ii

(51)

(52)

(53)

(54)

All =

2

AI2-- £
1

¢ " '(gs)

(56)

A21 = £ (57)
1

£
2

A22 - -£
1

(58)

These algebraic equations are solved by using the
methodof steepestdescent as was done for the single-

degree-of-freedom system.

Information of the dependency of the amplitudes

M1, M2, Q1, Q2, R1, and R 2 on the system parameters

is shown on Figures 6 through 11. Of main concern

are the forcing frequency, the amplitude of forcing

function _o, and the phase (_) of the forcing frequency

_, with the other parameters r, _; and _o noted on
the respective curves. Since the meaning of the curves

seems to be clear, they require little comment. It is
obvious that two resonance conditions occur with the

backbone curve appearing when }-o is equal to zero.
The system contains the jump phenomenon discussed

under the single-degree-of-freedom system with the
signific'ant difference that it occurs near each reso-

nance frequency. The effect of changing the ratio of

specific heat T is not significant. The changing of the

forcing function amplitude _-0 does not give a larger
maximum response due to the nonlinearity, but does

give larger amplitudes away from resonance.
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20
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.A SIMPLE METH()D FOR DETERMINING THE BENDING MOMENT EQUATION THAT INCLUDES

VEHICLE ELASTIC AND SLOSHING MODES AND A NUMERICAL EXAMPLE

BY N65 /_4131
Robert S. Ryan, Fred Swift, and Don To_n_'6n_ • _

SUMMARY _4\_ _ Symbol

This paper describes a method for deriving the V

bending moment of a vehicle in terms of pertinent

control parameters. The equation is presented in a V w

form that is easier to use for control optimization
X

techniques, particularly if the bending moment at some

critical station is chosen as the value to be optimized. X
The form of the equation lends itself to any technique cg

used in vehicle dynamic response studies. Also in

this form, the effect of various parameters is corn- XE

pletely separated allowing a better survey of causes

and effects. A numerical example is given and the ef- XK

fects of angle of attack, engine deflection, bendingdy-

namics, and propellant oscillations determined. The/

trade-off between angle of attack and engine deflectio_J/X T

X

DEFINITION OF SYMBOLS _k__" \1 _/_/V yY

Symbol Definition ._ (x)

a
o

b
O

C
Z

D
O

F
S

F(s)

Attitude control gain

Angle of attack control gain

Local normal force coefficient y

Reference diameter of vehicle a

Swivel thrust
w

Alpha channel filter transfer function c_ (x)

Moment of inertia

y!

,v(x)

V'_

_v(x)

M

M(x)

Mass of vehicle

Local mass distribution

M !

N'

q

s

T(s)

Aerodynamic Moment coefficient
T

Aerodynamic normal force coefficient
-%

Dynamic pressure _ET

E7 i
Vehicle reference area

AFy

Actuator transfer function D

Definition

Vehicle velocity

Wind velocity

Vehicle station

Location of vehicle center of gravity

Gimbal station

Vehicle station about which moments

are taken

Vehicle station at aft end of vehicle

Vehicle station at nose of vehicle

Normalized deflection of vehicle

Slope of deflection curve

Rate of change of slope of deflection

curve

Translation normal to trajectory

Angle of attack

Afigle of attack due to wind

Local angle of attack

Engine gimbal angle

Elastic deflection of vehicle

Attitude angle of vehicle with respect

to trajectory

Acceleration normal to vehicle cen-

ter-line

Aerodynamic coefficients
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DEFINITIONOFSYMBOLS

Symbol

C1=
M !
m

I

Definition

C2=

Fs XE

I. INTRODUCTION

The ascent of a space vehicle through the atmos-

phere subjects it to many disturbances, including wind

magnitude, wind shear, and turbulence or gusts. The

loads induced on the flight vehicle due to these distur-

bances are of major concern in designing the vehicle

structure. Therefore, we must be able to predict the

probable loads. Of great concern is a means of opti-

mizationof control systems in such a manner that the

loads are reduced at the critical station, while at the

same time not building up excessive loads at another

station making it the critical one. Obviously, this

type of load reduction canplace more payload in space

by optimization of the structure. The form of the

bending moment equation as used by stress engineers

is not readily applicable to the control engineer's opti-

mization techniques. These forms of the equation are

the mode displacement and mode acceleration methods.

A study of these equations shows that the effects of the

various parameters are not completely separated so

that a good physical insight into the phenomenon can-

not be obtained. Also in using equations in this form,

large numbers of terms or modes are necessary for

good convergence. In some cases, numerical ac-

curacy is not good due to the subtraction of large

numbers.

The bending moment equation is presented in a

form which allows the effects of the various parame-

ters to be completely separated and at the same time

retain a form readily applicable to optimization studies

by the control engineer and eliminate the numerical

error. To illustrate this, a numerical example for

the Saturn V space vehicle is included showing the ef-

fects of rigid body angle of attack, engine deflection,

bending dynamics, and sloshing dynamics. Of parti-

cular interest to the control engineer is a curve pre-

senting the trade-off between angle of attack and

engine defleftion.

II. DERIVATION OF BENDING MOMENT

EQUATIONS

A. COORDINATE SYSTEM AND EQUATIONS OF

MOTION

The coordinate system" chosen' to 'd_scrib6 %he

system is a two-dimensional trajectory-fixed §ystem..

The origin coincides with that of the vehicle center of

gravity on a nominal trajectory. The positive x-axis

is tangent to the trajectory and in the direction of

flight. The positive y-axis conforms with that of a

right-handed coordinate system. Lateral translation

is measured on the y-axis and rotation (99) is meas-

ured counterclockwise from the positive x-axis. This

is illustrated in the following diagram for a rigid ve-

hicle.

Y

_X

FIGURE 1. COORDINATE SYSTEM

Figure 2 is a vectorial representation of com-

ponents of the angle of attack.

q9

• ,_ y w

FIGURE 2. RIGID ANGLE OF ATTACK

V

= _ y + ___w
V V

To include vehicle bending, it is assumed that the

vehicle's structure can be approximated by the super-

position of several free-free beam modes from the

relationship

y(x,t) = _ r/v(t) Yv(x)' (1)

t'
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which defines the centerline displacement of the struc-

"ture;Y(x) is the free-free normalized mode shape

and _? the generalized coordinate. These mode shapes

are computed with the liquid mass and engine masses
included, but asseumed to be frozen in.

The dynamics of the liquid are represented by a
mechanical model attached to the vehicle tank walls.

This model exactly duplicates the forces and moments

determined from the hydrodynamical solution and ac-

curately duplicates the fluid oscillations within the

assumptions made for the hydrodynamical solution

(incompressible, irrotational fluid with small distur-

bances).

Bases upon these considerations and assumptions,

the equations of motion and various relationships be-
come:

i. Local angle of attack

v w v Yv (x) v...... Yv (x)
v v (2)

= arigid + arotation + abending

where a rigid = _ - -Y--+ c_,
v

rotation = - x-_, and
V

o_ bending _ 7/v Yv (x) _ _?v.... v Yv (x).
P V

2. Rotation equation

S

m X
S S ""

I _s + Cl_ + C2 fl + _ Q_v _?v (3)
IJ

3. Translation equation (perpendicular to vehicle
centerline )

m

?,__.ss_" +_ QE 7?u (4)_'-k2 °_-k3fi+-- m s v
S p

4. Bending equation

m

_?p+2 _B _B + w2 s_?p B_?p + _ MBYv (xs) _'s
S_P

m

y_ -2QD a +_Q 77v
+g _ _s V(Xs) # AP v

S,M P (5)

5. Sloshing equation

+ is + L(xs 
b'

-gq_ +g _?v Y' (Xs) = 0
P

/)

6. Control equation

(6)

fl= ao _i+ ai (Pi+b _.O 1

where

(7)

_i = _ - _ _v Y'v (x(p)
P

and

Y+o_cL=qo -
1 V W

Y' (%) % Xv¢
_'_/v v v v- - -- Yv (xv) "
P I,,'

B. BENDING MOMENT EQUATIONS

The bending moment arises from the lateral

forces acting on the vehicle. By summing from a

particular station to one end of the vehicle, the pro-
duct of these lateral forces times the distance to the

desired station gives the moment value at that station.

The lateral forces have three sources: aerodynamical

forces dependent upon local angle of attack, inertial
forces dependent upon local acceleration, and lateral

components of thrust due to engine swiveling. The

moment due to thrust misalignment arising from ve-

hicle bending will be neglected. This leads to the fol-

lowing equations for bending moment.

x E

M B (8)

M B

Aero qs f C'
= DO z (X-Xk) c_(x)dx

xk oz

xE
..

Inertial= - f M'(x) (X-Xk) Ti(X) dx

xk

- _ ms (Xk - Xs) _s " (9)
S

The M' (x) considers the sloshing mass as rigidly
attached at a point; therefore, the sloshing dynamics
show up as the second summation term.
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,, (1%
M B Thrust= F fl (X E-Xk)S

Assuming that the bending contribution in equa-

tions (3) and (4) are negligible (this should be a valid

assumption since this is the contribution of bending to

the local angle of attack and should be small), the

lateral acceleration of the center of gravity becomes

m

2 s' (111_'cg = k2 _ + k3 _ -
S

and rotational acceleration becomes

m

:- c, c2 +?, (Xeg-xs) (12)
S

Substituting these relationships into equations (8) and

(9) neglecting small terms yields for the bending
moment

MB(xk ) M'c_ g M' "" '

(13)

whe re

x E

:qs f Cza(Xk_ x) dx
M'a (Xk) Do x k

N_.__'xE

- m f M'(x) (x k- x) dx

x k

M' xE

+--i- f M'(X) (x k- x) (Xcg
X

k

-x) dx (14)

M_fl(Xk) = F s(x k-

Fs(X k - XE)

I

F Xk

__s f M'(x) (x k- x) dxXE) - m

x) (Xcg - x) dx

x E

x k

f M'(x) (x k -

x E

x k

M'#(Xk) :- f M'(x) (x k-x) Y (x) dx#
x E

(15)

(16)

, xkm S

M6(Xk) - _ f M' (x k- x) dx
X

E

x km

(x -x)f M' -x) -
+ I cg s (Xcg (Xk

x E

x) dx (17)

""1

+ ms (Xk- Xs)lI
@

By taking the limit of the integrals over the total

vehicle we can see that each of these coefficients

satisfies the boundary conditions (moment zero at end

of vehicle)..These analytical results are not included,

but can be verified by consulting the plots of these

coefficients presented in the next section.

Representing the bending moment in this form has

numerous advantages to the control engineer. Among

these advantages are

(i) complete separation of the effects of the

various control parameters,

(2) weighting ortrade-off of the various param-

eter effects as a function of vehicle station, thus, lead-

ing to optimization possibilities at the weakest sections,

(3) the moment is not as sensitive to numerical

errors because the coefficients can be computed on

large computers using large numbers of terms, and

(4) greater physical insight into the problem of

load reduction.

II. NUMERICAL EXAMPLE

The bending moment coefficients as derived were

computed for the Saturn V space vehicle at 70 seconds

flight time (Figures 3-6). The ratio of the coefficient

of angle of attack to the coefficient of engine deflection

is shown on Figure 7. It can be readily seen that any

control law that increases the ratio of engine deflec-

tion to angle of attack will be detrimental to the bend-

ing moment.

lob

J

70S¢,c,uul Satuln V [A)I(

N,,,u. C:,s_

M"/l

M './ ,

!

FIGURE 3. M s VERSUS VEHICLE STATION

%
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To determinethe effectsof thevariouspartson
the total bendingmoment,a responseof thevehicle
wasmade. Thecontrol equationwas assumedto be
ia_alwiththerate gyrolocatedat thevehicletail for
bendingmode stability. ALl sloshingmodeswere
dampedbyintroducingadequatedampinginto theslosh
equation.TheinputforcewastheMarshallsynthetic
profile with 99percentwindshear, 95percentwind
magnitudeandthesuperimposed9m/sec2gust. Plots
of thetotalbendingmomentandthevariouspartsare
shownonFigures8and9. Bendingdynamicshavean

Max J0*

7Os<,_,,n<ls,ltu,, v LOR
hi>,,, C,,_e

FIGURE 8. BENDING MOMENT DUE TO SLOSHING

VERSUS VEHICLE STATION

, i 1 * ,

effect of from 5 percent to 50 percent depending.'on the

vehicle station. The maximum effect of propellant"

oscillations is 3 percent. The contributions of angle
of attack and engine deflection are about equal.

Figure 10 is a plot of some representative failing

moment (not actual since this was not available) with

the bending moment obtained superimposed. It be-

comes quite clear that optimizing the moment at the

two or three critical stations would give better struc-

tural integri_. Since the purpose of this paper was to
present the equations, no attempt at optimization is

made, however, it is believed that the results shown

give ample evidence of the advantage of writing the

bending moment equation in this simple form.

STAVLONIN M_:re:lls

....!!
_ _ u

_o
_7uu

f

V
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/ \ 7,_s,,...,i s:,_rn V l._n_

\
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\

II

srA rlos IN _u:r_s

FIGURE 9. CONTRIBUTING PARTS TO BENDING

MOMENT VERSUS VEHICLE STATION

FIGURE i0. SATURN V FAILING MOMENT VERSUS

STATION, 70 SEC

C ONC LUSION

A simple representation for the bending moment

has been given. It can be concluded from the results

presented that the form of the equations leads to greater

physical insight and provides the control engineer with
a tool that can be readily used in optimization tech-

niques.
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• _ ON TRANSIENT RESPONSE OF A MULTISTAGE SPACE VEHICLE
0

by *

SUiQMAI_Y -- " -

Frank C. Liu

Symbol Definition

Presented in this paper is an analytical solution

for the transient response of a multistage space ve-

hicle to a general external load. The structure of the

vehicle is considered to be a stepped beam with uni-

form sections.

William type modal solution for a uniform beam

is assumed for each section of the beam. Upon im-

posing the conditions of continuity of these sectional

continuous functions, these functions should yield equal

magnitudes of deflection, slope, bending moment and

shear force at the junctions; and the boundary condi-

tions at two ends, the characteristic determinant of

natural vibration, and the arbitrary constants of the

solutions are determined. The differential equations

of the generalized coordinates are obtained by making

use of the orthogonality relation of the eigenfunctio_s_/

Symbol ion

a = EI/A Gi 2
S

A cross-sectional area of beam

A
S

effective shear-carrying area of cross

section

K n

L

m

M

N

P.
1

q

k
Q

S

t

V

W

X

square matrix defined by equation (15)

length of one section of beam

total length of beam

mass of beam per unit length

bending moment or total mass of beam

total number of section of the stepped beam

generalized load defined by equation (24)

external load

= qg 3/EI

square matrix defined by equation (13)

rigid body translation

time variable

shear force

static deflection

coordinate

[ A n] column matrix, arbitrary c'onstants = x/_

b

[ Cnl

= I/A_ 2

column matrix, arbitrary constants

Y

Z

transverse deflection

= y/l

c = EI/mi _

D characteristic matrix

Z.

1

T

natural vibration mode

= _ dimensionless time variable

Dmk element of the adjoint matrix of D rotation of cross section

E Young's modulus of elasticity l)a_ui-at ¥1u_Lauu m,,..,uv of _b

g row matrix defined by equation (16) 02 natural frequency of beam

moment of inertia of cross section static part of rotation
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Symbol

1

LIST OF SYMBOLS (Cont'd)

Dehmtlon

generalized coordinates

Superscripts

n designates quantity of the nth section.

(3) Applying the natural boundary condifd'ons at

the two ends of the beam to the solutions, we formu- '

late the characteristic equation from which the eigen-

values can be computed, and in turn, the eigenvectors

of the arbitrary constants are obtained;

(4) Using the orthogonality relation of the eigen-

functions, we determine the differential equations of

the generalized coordinates of natural vibration.

INTRODU CTION II. ANALYSIS

In the dynamic analysis of a rocket or a missile,

the structure is usually treated as a uniform beam in

very crude approximations, or as a beam with many

uniform sections in using matrix methods. Obviously,

the first approach gives a very poor result for a multi-

stage space vehicle because of the abrupt change of

structural parameters from one stage to another. In

matrix analysis, the structure can be represented ac-

curately, but the quality of the result depends on fine-

ness of the breakdowns of the structure. This often

leads to manipulation of large size matrices. Hence,

the limited capacity of the digital computer and the

excessive cost and time required to invert and to find

eigenvalues of a large size matrix are disadvantages

of the matrix method.

In the proposed method of this paper, the space

vehicle is treated as a uniform stepped beam. Each

stage of the vehicle may be further broken down into

steps as desired. The differential equation of beam

vibration considered is the Timoshenko type which is

written in the form of simultaneous equations in two

variables with a general external load function. Our

analysis is to find the response of the stepped beam to

a general external load. The solution given by this

paper is exact and maximum size of the matrix in the

calculation is 4 by 4.

We now outline tile analysis as follows:

(1) Assuming a solution of the beam differential

equations in the form given by Leonard [3] for each

section of the beam independently, we can obtain so-

lutions which are sectional continuous functions with

undetermined arbitrary constants;

(2) By imposing the conditions of continuity to

the section or continuous functions such that the as-

sumed solutions yield equal deflection, slope, bend-

ing moment and shear force at the junctions of the

sections, we can express the arbitrary constants of the

solution for each section in terms of arbitrary con-

stants of the two end-sections through chain relations;

A. EQUATION OF MOTION OF A UNIFORM

BEAM

The well known differential equation of transverse

vibration of a uniform beam, including rotary inertia

and shear deformation effects, may be written in the

the form of simultaneous equations of two variables of

the form [3]

OK2 s x - A 8t 2
(1)

f0__ 00___x) _ q(x,t)AsG _0x 2 - - m 0t 2 = - ,

where y is the transverse displacement and _ is the

rotation of the cross section of the beam. Expressing

the above equations in dimensionless form, we have

¢,,+ 1 (z'- ¢)- b_" = 0

_ (z"- ¢') - z' = -_ , (2)

in which the primes and dots denote the derivatives

with respect to the dimensionless spatial coordinate

-_ and the time variable T, respectively.

A great deal of work has been done insolving this

system of partial differential equations. The solution

given by Leonard [3] is presented here. Leonard as-

sumes the solution of (1) in the form

z(-_,r) = S(r) + w('x,r) +

¢(_,T) = _(x,r) +
i=O

_i(r ) zi(_)
i=O

_i (r) ¢i (_)'

(3)

where S(T) is the rigid body translation of the beam,

W(x,T) and _2(x,r) are the static deflection andro-

tation, Z i (x--) and ¢i ('_) are the natural vibration
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_' '(T) are the generalized coordinates.
mo'_e_, th_ same form of solution for a steppedWe will use

beam.

B. EQUATION OF MOTION OF A STEPPED
BEAM

Consider a stepped beam consisting of N uniform

sections as shownin Figure 1. The spatial coordinate

of the beam x and the beam parameters will be de-
signated by a superscript "n" to indicate the nTMsec-

tion of the beam. These parameters are assumed con-

stunt in each section of the beam, but may vary from
section to section.

x ! x2

L

FIGURE i. COORDINATE SYSTEM OF
MULTIPLE SECTION BEAM

It is obvious that for each section alone the sys-

tem partial differential equations are still governing

equation of motions, and the solution given by equation
(3) is still valid within each section. These solu-

tions are sectional continuous functions. Conditions

of continuity at the junctions of the sections must be

satisfied, and the natural boundary conditions at two

ends of the beam must be fulfilled by these functions.

1. Conditions of Continuity. The following
are the conditions of continuity:

Ey(xn, t)_xn=0 =Ey( n-l, t)_ xn-l=ln-1

I_xn n )_ =I a tty (x ,t 0xn- 1 y(x n-l,xn=o xn-l=l n-I

IM n )_ IM _l,t) 1(x ,t = (n
xn= 0 xn- 1= _n- 1

(4)

v(xn, t) =Iv(xn-l,t)'] vn_ 1 on-i
_ xn=o _ ,.

2. Boundary Conditions. Four types of
boundary conditions will be considered:

Displacement zero z = 0

Total slope zero z' = 0

Moment zero ¢' = 0

Shear zero z' - ¢ = 0.

(5)

3. Orthogonality of the Eigenfunctions. The
orthogonality relation for a uniform beam can be ex-

tended to a stepped beam. As shown in Appendix D of
Ref. 1, we have

L

f ml3(Z.Z. +b_. _.). dx= 0 i Cj (6)
1 j 1 j

0

C. THE GENERAL SOLUTIONS

We now proceed to determine the terms given
in equation (3).

i. TheRigid Body Translation. The rigid
body translation of the beam is the same for all sec-

tions. It can be obtained by direct integration of the

total external load acting on the beam and dividing by
the total mass of the beam:

L

S(t) = f f f q(x,t)dxdtdt/ M. (7)
O

2. The Static Solution. Setting the inertia of

rotation term equal to zero in the first equation of (1)

and replacing the inertia term of linear motion by the

inertia due to rigid body motion in the second equation
of (1), we have

W,(x_n, Tn) + _1 [W' (x-n, _.n) _ _(xn, n)]fl
a

=0

[W" (x-n, z n) - _'(x -n, Tn)] = _qn (xn,rn/_cn)
n

a

+ S" (Tn/_cn). (8)

Eliminating the variable _ from these equations, we
can obtain the solution for W by direct integration:

W(x-n,r n) = f f f fqn(d_n) ' _a n J fqn(xd-xn) 2

1
+ 2-4 (x-n)' S(Tn/_c ) +(t n l.._n, 2

when [ Cn] is a column matrix of four arbitrary con-

stants of integration. These constants are determined

from the conditions that the static solution W satisfies

both the conditions of the continuity, equation (4), and

the natural boundary conditions, equation (5). The
formulation of C n is given in Appendix A of Ref. 1.

3. Solution of Natural Vibrations. Since the
natural vibration of the beam is. harmonic with fre-

quency co., we may replace _,. by -(w2/c)_I, i and Zi
by -(w2i/c% Z i in equation (2). 1This yields
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n _I,!' (x-n) + Z' (x-n) @i (Kn) + (bn/cn)w2i _I'i(x ) = 0a

1 i

(9)
Z'.' (K n) - ,I,'. (Kn) + (an/c n) _v2 Z. (x-n) = 0

1 1 1 1

i = 0, 1, 2, ...

The solution of the above equations is

.= ._n o-n,[ n7
Z i (_n) : (cosha n _nsinhai x cosfli x slnfl_ x )_iA (10)

(d n n n-n n n _n n n-n'_FA n']q,i(_n) : sinhc_i x-ndnc°shc_ixi -eisinfli x ei c°sni xJ_i]'

where A n is the i th eigenvector of A n. and
1 1

nw2i/c:) n n (fin anw2i/cn) ndn = n + a ai ei = - f_ii i

where a. and ft. are the real and imaginary roots, re-
spectively, of _he algebraic equation

k.a + X! (a+b)w2./c- (abw!/c- i)w2./c = 0. (12)
1 1 1 1 1

We now form a column matrix which consists of

four elements: deflection, slope, bending moment,

andshear force. It is readily seen from equation (10)
that

(Y niT
(x n) dY(xn) M(x n) V(x ) = Q"(X n) An,(/3)

dx n

where

Q(x) =

cosh cvx _ sinh _ x ¢ cos fl _ { sin _ _ [

I_ _inh _v _ _ _h _ x _/ sin _ x I_ _os (J x

_ _'Ifdqcosh _) _ EI_i t, s ...... x _ ...... _ _ sinflx
I

i
EI _ -d EI (* -d El e

l

Let us denote

Qo (_n) xn=o and Q_ =IQ(xn)l _n=l

With the aid of the above notations, the conditions of

continuity given by equation (4) may be written simp-
ly in the form

n A n n-1 An-1
Qo = QI (14)

By successive substitution of equation ( 14), A n can be
expressed in terms of A 1,

A n = K n A 1

where

K n" (Q:)-I Qln-I

J _ p, '

I

(,15)

... (%)-%.

By making use of equations (13), (14), (15) and
the following row matrices

gi = {l 0 0 0} for deflection,

g2 = {0 1 0 0} for slope,

g3 = (0 0 i 0} for bending moment,

(16)

g4 = {0 0 0 1} for shear force,

we may express the natural boundary conditions sim-
ply as

DA I = 0, (17)

where

D

[-g ]

[ gs

I g,

Lgu

Q1
O

QNKN

r,s,t,u= 1,2,3,4 .

Hence, the characteristic equation is obtained by let-
ting the determinant of D equal to zero

fromwhich the eigenvalues or the natural frequencies

wi, i=l, 2, ... are computed. Let Dmk (w i) denote

the elements of the adjoint matrix of the matrix D,*

then the eigenvector of A! is
1

1

AI

AI

1

D21( coi)/Dll( coi)

D31( coi)/Dll ( coi)

D4i( coi)/Dll( wi)

(19)

and

A n = Kn(wi ) A!
1 1

(20)
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Wt_e ' 0 L
general prgcedure bf computing coi is suggested

as follows:

1. Assume a value of co..
1

n n
2. Findo_. andfl, forn= 1,2,...,N from

(12) 1 1
equation

3. Compute Qn and Q_ for n = t,2 .... N from equa-

tions (t3) _o (15).

4. Compute ID(wi) I from equation (17).

5. Repeat steps 1 to 4, until [D(_oi)] approaches to
zero.

For the rigid body mode (w o = 0), _I,o=0 and

Z =C from equations (23) and (24),
O

N

m = _ mn(_n) 3 Z 2 (25)
O

n=t o

N l

P (t) : Z _ f mn(;n)aw(x--n, _-Q __n (26)
O O °

n=l o

If the beam is assumed initially at rest and an-

deformed, we have

z(x n, 0) = 0

i(x n, 0) = 0
4. The Generalized Coordinates, _bi(t). "

Substituting the assumed solution, equation (3), into
¢(n, 0) = 0

the differential equation of motion (2), and making use

of equations (8) and (10) yields _(x n, 0) = 0.

fi, [ d2_bi(t) ]dt 2 + w2"1 q_i (t) Zi(_-n) =
i=0

- -_ w (x_, dcn t) (21a)

i'xn_bi (t) w 2
dt 2 + 1 _bi (t =

O _(x -'n, c_t) (21b)
- Ot2

Now, we multiply equation (2ta) by n_3Zj and equa-
tion (21b) by bm_ '_ _., then integrate the sumover

the range 0_<x_<L. M_king use of the orthogonality

relation given by equation (6) we find that

d 2 P.(t)d2 qbi i I

dt 2- + w 2. _bi= i=0, 1 2,.1 m. dt 2 ....
1

(22)

The generalized mass and the generalized load ap- 1.

pearing in the above equation are defined, respectively,
as

m.--2 ft mn( n)3 2.
1

n=i o
(x-n) + b n _I,2i (x n) ]

(23)

P.(t) = _ f mn(ln) 3 _]c"(_n, t)z.(_n) +
1

n=i o

(24)- ]b n _2(x-n, _c n t) _.(x -'n) x_.
1

(27}

Consequently, the initial conditions for 4)i

_bi(O) = - P.(OI/m.1 1

$i(0) = -P.(O)/m..
I I

are

(28)

i =0, I, 2, ...

Finally, equation (22) may be solved by standard pro-
cedures.

3,

4,
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NONLINEAF_ VIBRATION OF BEAMS

by

Frank C. Liu

i

SUMMARY

N65-241)}
This paper deals with vibration of" uniform beams

with large amplitude. Two sets of system of nonlinear

partial differential equations of two variables are de-

rived in Ref. 1 for the vibratory motions of a beam.

One set treats beams with axially fixed ends; the other

concerns beams free of axial constraints. The linear

parts of the beam equation in both cases are the Tim-

oshenko type, while the nonlinear terms are triple

product of the first and second derivatives of the dis-

placement variables.

For practical purposes, the nonlinear terms may

be regarded as small quantities; thus, an approximate

solution in the form of a power series is developed

based on Krylov-Bogoliunov's principle by using the

linear solution as agenerating function: Two illustra-

tive problems, a simple supported beam and a free-

free beam, are presented with numerical examples to

show the variation of the undamped frequency with re-//2

spect to amplitude of vibration.

LIST OF SYMBOLS -,_\-

Symbol Definition

A dimensionless amplitude of Y
O O

a = = k'G/E

a' = 1/a

b 2 = El/pAL 2

A cross sectional area of beam

modulus of elasticity

G modulus of shear

h.

1

unknown constants, equation (6)

bending moment of inertia of beam

k' shear coefficient

L length of half-length of beam or differ-

ential operator

iE(a'+i /3 2+4(a'+ + ]
2

p2 _

q2 = 15 (aT+ i)/3_2 +_a'- i)2/32_°2+ 4¢O2

s dimensionless time variable (=bt)

t time variable

T N nonlinear period of vibration

T linear period of vibration
0

U dimensionless longitudinal displacement

(--u/L)

x coordinate along beam

Y dimensionless deflection (=y/L)

Z dimensionless transverse displacement due

to shear (=yq/L)

z = x/L

/3 = I/AL 2

fl' = (1 + a')fl

p mass density of beam

Subscripts "z" and "s" are partial derivatives.

I. INTRODUCTION

In dealing with dynamic control problems of a

space vehicle to external disturbances in flight, it is

often required to know the precise natural frequency

of the vehicle. It is well known that the natural fre-

quency of an elastic body varies with its amplitude of

vibration; however, there have been few analytical re-

stilts published. This phenomenon has little signifi-

cance when the amplitude is small. It is usually re-

ferred to as linear vibration and the frequency is re-

garded as constant.

The nonlinearity in transverse vibration of a uni-

form beam is mainly caused by one of three factors:
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(li' large curvature of bending, (2) longitudinal ex-

tensionof the beam, and (3) large deflectionand lon-

gitudinal strain. In deriving the nonlinear differential

equation of beam vibration, it is desirable to reduce

the number of variables to minimum, since the com-

plication of a nonlinear problem increases rapidly with

thenumber of dependentvariables. Consequently, the

author proposes that the nonlinear vibration of beams

be treated individually according to its cause of non-

linearity.

In this analysis, beam vibrations with large amp-

litude fall into two categories according to their boun-

conditions:

(1) Beam With Axially Fixed Ends:

For beam with two ends fixed axially, the

longitudinal stress caused by the large transverse dis-

placement becomes an important factor of the nonlinear

vibration. In Ref. 1, the Lagrangian method is used

to obtain a system of differential equations in two de-

pendent variables: the transverse and longitudinal

displacement. The nonlinear terms in the differen-

tial equations are a result from the nonlinear strain

8u 1 _)2e = _ + - ( used in the strain energy ex-
x 8x 2 8x

pression.

(2) Beam Free From Axial Constraints:

The longitudinal stress due to the transverse

displacement in this case is very small compared with

the bending and shear stresses. A system of differ-

ential equations of the transverse displacement and

displacement due to shear is formulated based on

dynamic equilibrium.

The linear parts of the beams equation of both

cases are of the Timoshenko type, i.e., rotary and

shear effect are included, and the nonlinear terms are

of triple products of the first and second derivatives

of the variables. Difference methods are generally

employed for numerical solution of partial differential

equations of second order. There has been no syste-

matic scheme, to the author's knowledge, developed

for the approximate solution of nonlinear partialdif-

ferential equations for higher order. A few papers

dealing with special nonlinear beam vibration prob-

lems have been found [ 5 through 8] ; however, these

methods are not completely general.

In solving nonlinear ordinary differential equa-

tions, Krylov-Bogoliubov [3,4] has employed the

linear solution as generating function in expanding the

dependent as well as independent variables in power

series of a smallparameter. For practical purposes,

the nonlinear terms in the nonlinear beam equations

can be regarded as small q_antity; by the same token,

the approximate solution may be considered as the

linear solution plus some functions with a small para-

meter as their coefficients. Based on this principle,

the present method is developed.

II. EQUATION OF MOTION

The equations of vibration of a uniform beam with

large amplitude have been derived in Ref. 1 for two

cases. In Case I the beam is treated free to move

longitudinally. Consideration of dynamic equilibrium

of a beam element results in partial differential equa-

tions with the transverse displacement and the dis-

placement due to shear as unknown variables. The

beam is restrained axially at two ends of Case II.

The longitudinal and transverse displacement are

taken as unknown variables of the partial differential

equations which are obtained by using Lagrangian equa-

tions. The detail of the derivation of these equations

is given in Ref. 1; here, we simply present these

equations in their final nondimensional form.

Case I. Beam With No Axial Constraints

L(Y) = pF = M(H,) (la)

H, = y2z [aZzz - (3p/2) Yss_- a Yz Yzz Zz' (Ib)

z -pz -(a/fl) z =- Y +Y (1c)
ZZZ ZSS Z ZSS ZZZ"

Case II. Beam With Axial Constraints

L(Y) = #F = M(H2) (2a)

H2 = (Uz Yz +21 y,_z) (2b)
Z

U = flU = - Y Y (2c)
ZZ SS Z ZZ'

in the above equations, the subscripts z and s denote

partial derivatives with respect to the nondimensional

spatial and time variables, respectively; L and M are

partial differential operator defined as follows:

_ _4 a_ a4

l, = _z--_ - _' 0z _0s 2 + _ t a'_ 2 .0s--_-

M = i/fl-a' a(-z2 3s2_ )

(3)
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Notice that the differential equation, L(Y) = 0, is

a Timoshenko beam equation, and the terms pF on the

right-hand side of equations (la) and (2a) are the non-

linear functions. +

IH. METHOD OF SOLUTION

The method of solution proposed here is based on

the assumption that the beam equations are slightly

nonlinear; in other words, the nonlinear function is a

small quantity. Hence, we may extend Krylov-

Bogoliubov's principle [3] for ordinary differential

equations to the beam equation and use the linear so-

lutionas a generating function. First, we expand both

the dependent variables and the independent time vari-

able in a power series in terms of a small quantity _z,

Y = Y + PY1 + P2Y2 + -. • (4)
O

W = W + pW l + p2W 2 + ... (5)
O

T
s = - ( 1 + ph 1 + p2h 2 + . .. ) , (6)

¢0

where W represents either Z of equation (tc) or U of

(2c), Yi and W i are unknown functions, and h i (i = 1,
•.. ) are unknown constants.

Substitution from equations (4) through (6) into

(la) and (2a) results in

(1 + ph I +..o)4 (Yo + PYI + ...)zzzz

2 02

- fl'w2(l +Phl+''')--_T 2 (Yo +PYI+''')zz

2 D2

+0) 2 (1 + ph l+ ...) _ (Yo + PY1 + "'')

04

+a'fl2 _4 _ (Yo + #Y_ +'" ')

E(yo (W o= (i+ uh1+...) _F + _Y,+ ...), +

+ PW1 + "")3" (7)

Collecting the terms with the same power of p and

equating them to zero, we obtain from the above equa-
tion

O

P : L[Yo] = 0 (8a)

pl: L[Y1] =- 2hi (2Y°zzzz- fl' w2 Y°zz'rT +

+ w2 Y°'r'r ) + F1 (Yo' Wo) (8b)

1 • ' t

p2:L[Y2 ] =_ [4hl Y1 +2(2h 2 + 3h 2) yo]
ZZZZ

+/3'c02 [2hlYl+ (2h2+h _) Y ]
O

- 0)2 [2hi Y1 + (2h2 + h2) Yo ]
TT

+ F2 (Yo' Y1, W o, Wl, h0,

ZZ

(8c)

where the F's are the results of the expansion of the

nonlinear function #F,

#F[(Yo +#Y1 +...), (W o +#W1 +...)](1 +ph 1

4

+ "'" ) = PF1 (Yo' Wo) + p2F2 (Yo' YI, W o, WI, hi)

+ .... (9)

Solution of the linear differential equation (8a) for

various boundary conditions may be found in Ref. 2.

Using the linear solution for Yo' the approximate so-
lutionof the second variable Z or U can be readily ob-

tained from the following equations,

_ = +
(Zi) zz z -fl(Zi) zs s (a/fl)(Z i) -fl(Yi)zssZ

(Y.) (tO)
1

ZZZ

i = 1,2,...

(U) -/3(U o) =- (Yo) (Yo) (lla)
0

ZZ SS Z ZZ

(UI) - fl(U+)ss =- (Yo) (Yi) - (Yi) z(Yo)zz
ZZ Z ZZ

(iIb)

Since the effect of the homogeneous solution of the sec-

ondvariable to the transverse vibration, Y, has little

physical significance, it may be neglected for simpli-

city.

Now, the terms on the right-hand side of equation

(Sb) are known from the solution of equations (8a) and

(10) or (!la). Since-the left-hand sides of equations

(Sa) and (8b) are identical, the natt, ral frequency of

Y1, i.e., the frequency of the homogeneous equations

(8b), and the frequency of Yo are equal. The condi-

tion for Yt to have a periodic solution is that the sec-

cular terms on the right-hand side of equation (Sb)

w

io
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must _¢anish.' Apparently, this condition cannot be

satisfied for all values of z. Letting this condition be

satisfied for the fundamental mode only should yield a

useful approximation and permits the constant h I to be

determined. Hence,

h i =

i 27r

fo Jo FI (Yo' W°) cos T _o (z) dTdz

1 27r (12}

2 f f (2Yozzz z - fl'w2yozzrr + W2YoT T ) cos V_?o(Z) drdz

o o

Next, solving for YI from equation (8b) with con-

sideration of equation ( 12), we find

Y1 = A lcos T +Ylp ,
(13)

and in turn we solve for the second variable W 1. In

the above equation, YI_ is a particular solution of

equation ( 8b), and the arbitrary constant A 1 and the un-

known constant h 2 are to be determined from equation

(8c) by letting the secular terms of both the first and

second harmonic vanish simultaneously.

The amountofwork necessary to carry out higher

approximation is greatly increased; however, the first

approximation is quite adequate for engineering pur-

poses. The nonlinear period of vibration is

TN = 2____o3( 1 + ph i + p2h 2 + . .. ) . (14)

IV. EXAMPLES

A. SIMPLY SUPPORTED BEAM WITH SYMMF-

TRIC MODE

Considering a simply supported beam with the

twoend supports being fixedaxially, we apply the sys-

tem of differential equations given by (2). The linear

solution found in Reference 2 is

Y = A cos pz cos-r. (15)
O O

Using this solution and the boundary conditions U o = 0,

when z = 0 and 1, the solution of equation ( 1 la) is ob-

tained:

p3 A 2

U - o
o 8 (p2 _fl032) sin2p zcos21" (16)

Note that (1) this solution is not exact - it is off by a

constant term and (2) the homogeneous solution

which representg the' lbngitudinal traveling stress is

omitted.

Substituting Yo and U from equations (15) and
(16) into equations (2b) a°d (9) results in

pF = p _, f cos npz cosm _, (17)
mn

m, n=l, 3

where

fmn _ 3nm (lift + n2 a' p_ - m 2 a' fl 032) _ 3-n)p2

+ 3(n-____22)nfl 0321

= A_ p4/3 2 (p2 _ fl032) .
O

Consequently, equation (Sb) becomes

L[y1 ] = _ 2h I(2p4_ fl,032p2_ 032)A cos pz COST
O

+ _ f cos np_ cosm T. (18)
mn

m, n=i, 3

From the condition of periodicity of the solution YI

that the coefficient of cost must vanish, we have, by

neglecting cos 3 pz,

hi=_ 3(i/fl +a' p2 _ a, f1032)(2p2 _ 3fl032) (i9)

2(2p A - fl' 032p2 _ 03_) A
O

Now, the solution for Y1 from equations (18) and

(19) is

cos npz cos3_- (20)Y1 =A1 cos pz cos T + C n
n=t, 3

C = f._n/(n4pA - 9n_fl'032p2 - 9032 + 81a'fl_034).
n

The arbitrary constant A 1 and unknown constant h_.may

be determined from the second approximation which

will not be given here.

Numerical Results

To show the magnitude of _, we consider beams of

the following:

a. Solid cylindrical beam with D/L=l/lO (D =

diameter)
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fi = I/AL2 = (D/4L) 2 = 1/1660 "

b. Thin hollow cylindrical beam (neglect shell
effect), D/L = 1/10

fl = 2(D/4L) 2 = 1/800.

TN/T ° vs A °

A
O

1/lOO

1/5o

1//25

p = 1/1600

1 - . 015

i - . 06

t - .18

= l/s00

1 - . 0075

i -. 03

1 - . 12

Note that A o is the ratio of amplitude to half length of
the beam.

B. FREE-FREE BEAM WITH SYMMETRIC
MODE

Since the ends of a free-free beam are free of

shear force and bending moment which can be ex-

pressed conveniently by the variables Y and Z, we use

the system of differential equations given by (1). The

mode function for symmetric mode given by Ref. 2 is

Yo = _7o cos T (21)

_7o (z) = A ° (q sin p ch qz - pshq cos pz)/a °

a = (q sinp chq - pshq cos p) - (q sin p - pshq).
o

As a result of equation (21) the solution for Z o found
from equation (t0) is

Z = A (b lchqz +b 2 cospz) cos _', (22)
O O

where

bl = q(flw2 + q2) sin p//(q2 + f_c02 _ a/fl)a
O

b2 = p(_w2 _ p2) shq/(p2 _ _w2 + a//3)a ° .

The homogeneous solution of Z is omitted.
O

To obtain the nonlinear function, we substitute

equations (21) and (22) into equations (2b) and (9),

then expand in series by eigenfunction expansion and
take only the fundamental mode,

where

1 aTK = - -- f [ (1�raft - ma'flw 2) H - --
m o m

o

m:l, 3

1
R =

1

2 (z) dzf %
0

HOzz] _?o(Z) dz
(24)

2 (a_Ozz + 3H ° (z) = - Vo 2 _W2Vo) + a_°z V°zz_°z
z

= a(alb 2 - a2b l) [shqz sin pz (alq 2 chqz + a2P 2 COS pz)

- pq(sh 2 qz cos pz + ch qz sin 2 pz) ] +

3 flj(a 1 qshqz - a2P sin pz) 2.

a 1= A qsinp a 2 = A p shq.
O O

Similarly, it follows from equation (12), that

1

h i = K/2R f (2T/Ozzz z + fl'w2_?Ozz -w2_?o)_?odZ .

This results in

L[Y1] = K3_?o(Z) cos 3T . (25)

The solution for YI may be readily written in the form

Y1 = Al_o(Z) cos T+ K 3 (B 1 chqz + ]32 COS pz) cos 3T,

(26)

where A 1 is an unknown constant and

1

B1 = [q_ + 9fl' u)2q2 - 9092 (1 - a'fl2w2) ]

i

B2 = [pl - 9/_'_2p2 - 9co2(i - a'fl2ofl)]

The unknown constants A 1 and h 2 can be determined
from equation (8c).

The change of frequency of a free-free beam is
much smaller than that of a simply supported beam.

For fl = 1//800, the values of TN/T ° vs Aoareas
follows:

A = 1/10 TN/T ° = 1-.0019O

pF =-M(H o) = (KIcosT +K_ cos 3 T)_o(Z) , (23) Ao = 1/5 TN/T ° = 1- .0075

w
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,d q LUNAR TOUCHDOWN DYNAMICS STUDIES

by

Robert E. Lavender

SUMMARY

' 414
Results are p_s_It_d from five" brief_investiga -

tions which have beeff conducted concerning lunar

touchdown dynamics. These investigations concern the
use of a rocket motor to achieve a stable touchdown,

effect of elasticity on touchdown stability, comparison
of MSFC results with Grumman Aircraft Engineering

Corporation (GAEC) analytical results, landing dy-

namics for a cryogenic landing stage, and comparison

of MSFC results with GAEC scale model drop te_:J

LIST OF SYMBOLS

Symbol Definition

C
m

C
s

D

Crushing force of main strut

Crushing force of support strut

Landing gear diameter

k Radius of gyration about c. g.

k
e

Effective spring constant per leg parallel

to vehicle's longitudinal axis

L 2 Original height of center of gravity

L. F, Load factor; total external force divided

by earth weight for vertical landing on level
surface.

N Number of legs

T Stabilization rocket motor thrust

V
v

V h

V
r

W
e

5

Stabilization rocket motor burning time

Vertical velocity

Horizontal velocity

Rebound velocity from a vertical landing

Earth weight (based on ge = 9. 80665 m/s 2)

Stroke parallel to vehicle's longitudinal axis

0

_bo

_o

p

Lunar slope, negative for downhill landing

Initial pitch attitude, positive nose up

Initial pitch angular rate

Coefficient of friction

I. INTRODUCTION

In August, 1962, the George C. Marshall Space

Flight Center began a study of a Lunar Logistic Sys-

tem (LLS) basedonthe Saturn V launch vehicle. This

system was designed to "soft-land" large payloads on
the moon. Results of the study included a volume on

the touchdown dynamics aspects of the system (Ref.

1). The system was designed to land safely on lunar
slopes up to 30 degrees, but unfortunately, the landing

gear required under such a condition was large and

heavy. The results of Ref. i have been extended to
include vehicles with from three to six legs and vari-
ous deceleration load factors. These results, along

with a description of the mathematical model, are pre-

sented in Ref. 2.

While the method of Ref. 2 accounts for crushing

and sliding, it does not consider the effects of elastic-

ity in the vehicle's structure" or the fact that the legs

are hinged to the vehicle resulting in a variable land-

ing gear diameter during the touchdown motion. A
mathematical model including these effects is de-

scribed in Ref. 3. The author is indebted to John D.

Capps, Computation Laboratory, who has programmed

both methods for digital computation.

The purpose of the present paper is to present re-
salts of additional investigations made recently in the

field of lunar touchdown dynamics.

II. DISCUSSION

A. USE OF STABILIZATION ROCKET MOTOR

TO OBTAIN STABLE TOUCHDOWN

The purpose of this investigation is to obtain ad-
ditional information on stabilization rocket motor

8O
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requirements necessary to obtain a stable touchdown.
Ref. 2 shows that use of a stabilization rocket motor

is very effective in providing a stable touchdown. Re-

sults of Fig. 9, Ref. 2, correspond to a particular

landing gear diameter and initial velocity components.

This investigation provides the rocket motor require-
ments as a function of the landing gear diameter for

several values of initial horizontal velocity.

The investigationwas conducted for a four-legged

spacecraft landing on a 30-degree lunar slope with a

horizontalvelocitycomponent inthe downhill direction.

The vehicleimpacts on two uphilllegs, goes intofree

flight,and then impacts on two downhill legs. A stab-

ilizationrocket motor is assumed mounted on top of

the payload and directed downward through the vehic-

le's center of gravity. The motor igniteswhen the

downhill legs contact the lunar surface. The same re-

sultswould be obtained for a number of smaller rock-

ets mounted around the vehicle equidistantfrom the

center of gravity. The vehicle's attitude angle at

touchdown isconsidered to be less thanthe lunar slope

so that the firstlegs tosense eontactwill be the uphill

legs.

For any given landing gear diameter, there is a
minimum thrust below which the vehicle's center of

gravity will rotate over the downhill feet. This mini-

mum thrust is shown in Fig. I as a function of the

landing gear diameter for two values of the horizontal
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w e = 177,930N (40,000 Ib) Vv = 6 m/s

k z = 7.52 m z (81ft 2) 8 = -30 deg

Lz = 5.97m (235in) p.= 1.0"

L.F. = 6 _.o = 0
N=4 _o=0

STABILIZATION ROCKET MOTOR

RE QUIRE M E NTS

2.4

, t

velocity. The correspondingburningtime, also shown,

is essentially independent of the horizontal velocity for

the twaovalues considered. The thrust given in Fig. 1

will reverse the vehicle's sense of rotation just as the
center of gravity becomes vertical above the point of -

rotation. A higher thrust motor of constant total im-
pulse would be somewhat better from a touchdown sta-

bility standpoint. However, extremely high thrust

motors of very short burning time may present motor
development problems.

For a horizontal velocity of 2 m/s, a landing gear

diameter to center-of-gravity height ratio of 3.51 is

needed without any stabilization rocket motor. Using

a thrust equal to the vehicle's earth weight, this ratio

is reduced to 2.26 resulting in a landing gear diameter

which is only 64.4 per cent as large. Some additional

reduction in landing gear diameter is obtained by using

higher thrust motors. For large logistics vehicles,

which are designed to land on steep lunar slopes, use

of a stabilization rocket motor appears to be useful in

reducing the required landing gear diameter. These

results were obtained using the method described in

Ref. 2 which does not consider elasticity effects. Ad-
ditional study of the concept of stabilization rocket

motors in conj_mction with the vehicle's elastic char-

acteristics would be profitable.

B. EFFECTS OF ELASTICITY ON TOUCH-

DOWN STABILITY DURING LUNAR LAND-
ING

After the MSFC Lunar Logistics System Study
was completed, the Space Technology Laboratories

was awarded a contract, NAS8-11022, titled, "Com-
parative Design Study of Modular Stage Concepts for

Lunar Supply Operations." Results of the touchdown

dynamics portion of the study are included in Ref. 4.

Results of their analyses indicate that the effect of

elasticity is very important, increasing the required

landing gear diameter about 30 per cent compared to

that of Ref. 2. The method of analysis used by STL
accounts for the elasticity in the structure, but does

not consider the legs to be hinged, resultingin a vari-

able landing gear diameter during touchdown motion.

The purpose of this investigation is to determine

the effect of elasticity on touchdown stability for a

basic case using the method of Ref. 3. The discussion

is restricted to the following conditions:

W = 177,930 N (40,000 lb)
e

k2 = 7.52 m 2 (81 ft 2)

L 2 = 6.32 m (249 in)

N = 4
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D = 20.17'm {794 in)

L.F. = 3 * ,o

-V = 6m/s
v

V h = i m/s

# = 1.0

For these conditions, the vehicle had been found

to be stable (Ref. 2) for lunar slopesup to 30degrees.

Landing is in the downhill direction with a 2-2 impact.

Results of the investigation using the method of
Ref° 3 indicate that the combined effect of elasticity

and hinged legs is compensating to the extent that only

about 5 per cent increase in landing gear diameter is

required over the results from Ref. 2. Using an ef-
fectivevertical springconstantof 2. 452 MN/m ( 14,000

lb/in), the ve:_cle is still stable for lunar slopes up

to 27.8 degrees. Increasingthe landing gear diameter

to 22.35 m (880 in) provides stability up to 32.6 de-

grees. Therefore, a diameter of about 21.13 m (832

in) will provide stability on slopes up to 30 degrees.

This diameter is only 4.8 per cent larger than the re-
sults from Ref. 2.

C. COMPARISON OF MSFC AND GAEC

TOUCHDOWN STABILITY ANALYTICAL

RESULTS

This investigation compares some results of

touchdown stability obtained by the Grumman Aircraft

Engineering Corp. (Ref. 5) with results using an

MSFCprogram (Ref. 3). Such comparisons serve to
indicate the extent of agreement or disagreement be-

tween different approaches to the touchdown dynamics
problem. Results presented in Ref. 5include stability

boundaries for a series of configurations with various

landing gear diameters, height of the center of gravity,
and number of legs. Results using Ref. 3 have been

obtained for only one configuration. The configuration
chosen for comparison has the following characteris-
tics:

W = 44,482 N (10,0001b)
e

k2 = 2.69 m 2 (28.95 ft 2)

L 2 = 3.30m (130in)

D = 8.84m (348in)

N -- 4o

• . _ i , m

The load factor, in earth g's, experienced upon land-

ing vertically on a level surface depends upon tl_e co-

efficient of friction between the foot pads and lunar

surface. For the configuration chosen, GAEC shows
the load factor to vary from 5.6 for zero friction to
16.4foracoefficientoffrictionof 1.0. The maximum

load factor is obtained when both upper and lower leg

members are stroking in compression.

Values were chosen for the crushing strength of

the honeycomb crushable material in the upper and
lower leg members of the two-dimensional model of

Ref. 3 such that the load factors given in the above

paragraphwere obtained. In addition, it was assumed

that the upper and lower leg members of the two-
dimensional model have elastic deflection of one inch

before crushing takes place.

During a symmetrical landing (vertical landing
on a level surface) with zero friction, the foot pads

slide outwardwith the upper leg members inaompres-

sion and the lower leg members in tension. The ver-

tical stroke (parallel to the vehicle's centerline),

which exists at the moment crushing begins, together

with the normal force acting on the foot pads, deter-

mines the effective vertical spring constant for each

leg. When the vertical landing velocity is reduced to

zero, the foot pads begin to slide inward reducing the

compression load in the upper leg members and the
tension load of the lower members. The vehicle be-

gins a rebound motion and lifts off the surface as the

normalforce on eachfoot pad reduces to zero. During

a symmetrical landingwith high friction, the foot pads

remain stationary with both upper and lower leg mem-

bers compressing elastically until the crushing

strengths of the honeycomb material are reached. The
vehicle rebounds as the elastic energy stored in com-

pression is released.

Results of the symmetrical landing analysis are

shown in Fig. 2. The load factor and effective vertical

spring constant val:¢ in such a way that the vertical
elastic stroke varies from 0. 069 m (2.7 in) for zero

friction to 0.033 m (I. 3 in) for high friction. The

corresponding total vertical stroke is shown to vary
from 0.775 m (30.5 in) to 0.292 m (ll. 5in). It is

interesting to observe that the velocity with which the

vehicle rebounds into free flight decreases as the co-

effientof frictionincreases, until the friction is suf-

ficient to keep the feet from sliding. The rebound ve-

locity at high friction (no sliding) is larger than that
at zero friction because the energy stored in elastic

deflection ,is larger.

Results of the downhill landing analysis are shown

in Fig. 3. The vehicle initially contacts the lunar
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s'drfa_e on two feetwithan initial attitude _'f 5 degrees

nose up. The vehicle then rotates over and goes into

free flight. Zero friction is assumed for the uphill

contact since GAEC (Ref. 5) states that this results

in maximum initial overturning moment. Actually,

for low vertical velocity and high horizontal velocity

combinations, the uphill feet drag downhill so that

frictionwould result in higher initial overturning mo-

ment. High friction is assumed for the downhill con-

tact so that no sliding occurs. Comparisonof the sta-

bility boundaries shows that the MSFC result is some-

whatmorepessimistic. This may be due tothe MSFC

assumption regarding the elastic properties for the

landing gear. It is not too clear from Ref. 5 what

GAECassumed for the elastic characteristics. How-

ever, general agreement is shown between the two

methods.

D. TOUCHDOWN DYNAMICS FOR CRYOGENIC

LANDING STAGE

Touchdown dynamics analysis has been per-

formed to establish stability boundaries for configura-

tions in the size andweight class for a cryogenic land-

ing stage which has been under recent study. Results

of the analysis can be usedto estimate the landing gear

diameter required for stable touchdown as influenced

by the height of the center of gravity and the elasticity

in the vehicle. A load factor of 4was assumed for the

case of a level landingon all four legs simultaneously.

The analysis was based upon a downhill landing

with a 2-2 impact. Walton, Herr, and Leonard (Ref.

6) have presented, however, both experimental and

analytical evidence that the 2-2 impact orientation is

not the most critical orientation. The experimental

evidence was obtained by dropping a block of aluminum

vertically (no horizontal velocity) upon an inclined

surface. The same general trend has also been es-

tablished by the Bendix Corporation from drop tests

with a dynamically scaled model (Ref. 7). However,

further drop tests by Bendixwith a horizontal velocity

in the direction of maximum slope show that the most

critical landing obtained is the 2-2 impact with maxi-

mum horizontal velocity. Additional drop tests are

planned which will obtain the effect of cross-slope

velocity. The writer is indebted to B. T. Howard

and T. L. Powers of Bellcomm for the Bendix data.

Results of the analysis for the cryogenic landing

stage using the method described in Ref. 2 are shown

in Fig. 4. Thev_hic!e didnotgo into fcee flight when-

ever crushing stopped in the uphill legs for most of

these cases. Rather, the vehicle rotated as a rigid

body until the downhill legs made contact and began

crushing. After the downhill legs stopped crushing,

the vehicle rotated as a rigid body until it became un-

stable or until the rotation was reversed and a stable

touchdown achieved. High friction was assumed
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For a particular height of the center of gravity

(3.30 m, 130 in), the effect of elasticity in the"vehic-

le's structure has been obtained for three landing gear

diameters. Results are shown in Fig. 5 and were ob-
tained by the method of Ref. 3. The arrows shown

correspond to data from Fig. 4 which assumes essen-

tially an infinite spring constant. The lunar slope for
a stable touchdown decreases as the effective vertical

spring constant decreases.

An important consideration in the application of
the method described in Ref. 3 which does not occur

for the method of Ref. 2 is the question of the crush-

ing force of the support struts. For Fig. 5, as the

vehicle impacts on the downhill legs, both main and

support struts crush after some elastic deflection.

The crushing forces in these struts have been chosen
so that the reaction force on each pad in the plane of

motion tangent to the surface is about 0.7 times the
force normal to the surface. This selection of crush-

ing loads is merely a choice and does not represent

the optimum solution.

FIGURE 4. DIAMETER-HEIGHT RATIO VERSUS

LUNAR SLOPE

between the pads and lunar surface resulting in essen-
tially no pad motion. For any given lunar slope, the

required landing gear diameter increases with increas-

ing height of the center of gravity, but the ratio of

diameter to height decreases.
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FIGURE 5. EFFECT OF ELASTICITY ON TOUCH-
DOWN STABILITY

Using this method the vehicle did not rotate as a

rigid body about the uphill legs after crushing ceased,

but rather sprang into free flight. In the same man-

ner, there was no rotation about the downhill legs as

a rigid body after crushingceased. The vehicle sprang
back into free flight from the downhill legs. A con-

siderable number of bounces can take place on the

downhill legs before the vehicle either tumbles or a
stable touchdown assured.

As seen from Figure 5, there is serious loss in

stability as the spring constant is reduced. For ex-

ample, the method of Ref. 2 indicates that wifah a

diameter-to-height ratio of 2.46 the vehicle is stable

for slopes up to 15.6 degrees. However, to achieve

this same capability u_ing an effective vertical spring
constant of 3 MN/m (17,130 lb/in) requires a

diameter-to-height ratio of 2.92. This corresponds

to an increase in the required landing gear diameter

of 18.7 per cent. This effect has been found to beless

severe for the Lunar Logistic Systemwhere only about

5 per cent increase in diameterwas indicated, as dis-

cussed in Part B. It is worth noting that the larger

vehicle (LLS) landing on a 30-degree slope went into

free flight from the uphill legs using either method of

analysis and also that a coefficient of friction of 1.0

was assumed with no crushing of the support struts.

Therefore, as the vehicle crushed on the downhill legs,

the overturning radius increased during the motion.

Finally, a word of explanation is offered for the odd

values of diameter-to-height ratio shown in Figure 5.

These curves were originally ol_tained for landing gear

diameters of 320, 350, and 380 inches with a center-

of gravity height of 130 inches:
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COMPARISON OF MSFC TOUCHDOWN

STABILITY ANALYTICAL RESULTS WITH

GAEC DROP TESTS

The purpose of this investigation is to compare

MSFC analytical results With GAEC scale model drop

test results. The writeris indebted to Harold Benson,

MSC, for a copy of the GAEC results (Ref. 8). The

drop tests correspond to a one-sixth scale model of

an early four-legged configuration of the LEM landing

gear. The model data and corresponding full scale

values are given in Table I. The writer has adjusted

the weight, center-of-gravity location, and radius of

gyration to include the mass of the pad assemblies as

shown for the overall vehicle.

From the crushing strengths of the struts and the

geometry of the landing gear, the writer determined

that a load factor of 21 is developed during a vertical

landingwhenever the friction coefficient is high enough

to prevent sliding. This corresponds to a load faGtor

of 3.5 for the full scale vehicle which was used in the

MSFC analytical methods. This load factor is applied

to the basic module which does notinclude the mass of

the unsprungpad assemblies. Such a landing produces

a force on each pad such that, for this vehicle, the

component of force tangent to the surface is 1.50 times

the component normal to the surface. However, for a

2-2 impact landing, the tangent force parallel tothe

plane of motionis reduced by the cosine of 45 degrees.

Therefore, in the application of the two-dimensional

method describedin Ref. 3, the crushing forces of the

main and support struts were determined such that the

reaction force tangent to the surface, in the plane of

motion, was about 1.06 times the normal force.

Insufficient data were available to determine the

elastic properties. For the MSFC analysis usingthe

method described in Ref. 3, elastic deflections were

assumed for the main and support struts such that the

TABLE I. MODEL AND FULL SCALE

CONFIGURATION DATA

Basic Module Data Scale Factor Full Scale Data

We: 175. 13 N (39. 37 ib} 216 37830 N (8504 Ib}

2 Z 2 2 Z

k : 0.406m (4.37ft) 36 14.6m (157ff)

LZ: O. 665 m (Z6. 2 in) 6 3.99 m (157 in)

D : I. 197 m (47. 12 iN) 6 7. 183 m (28Z. 8 in)

Cm: 623 N (140 ib) 36 22420 N (5040 Ib}

Cs : 623 N (140 ib) 36 22420 N (5040 Ib)

Pad Assemblies (Unsprung Mass)

We : 27. Z7 N (6. 13 lb) Z16 5890 N (13Z4 lb}

Overall Vehicle

We: ZOZ. 4 N (45. 50 lb) 216 43, 720 N (9828 lb)

kZ 2 Z m 2 (165. 6 ft 2: 0.4Z7m (4.6Oft) 36 15.38

L 2 : 0. 577 m (22. 7 in) 6 3.46 m (136 in)

effective vertical spring constant per l_g was 4.90

MN/m (28,000 lb/in} for the full scale vehicle.

Results of the MSFC analytical analyses and the

GAEC drop tests are shownin Fig. 6. Since the GAEC -

modelwas a one-sixth scale vehicle, the experimental

velocity profile obtained applies directly (velocity

scale factor of unity) to the full scale vehicle landing

on the moon. The test model pads were equipped with

small prongs to simulate a restrained condition on all

pads. A large coefficient of friction was assumed for

the analytical analyses. Using the method described

in Ref. 2, which does not consider elasticity effects,

the analytical results are somewhat optimistic. Using

the method of Ref. 3, the analytical results are in gen-

eral agreement with the experimental data but are

more nonlinear.
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A TOPOGRAPHICAL STUDY OF THE F 2 REGION OF THE IONOSP_IERE

by

W. T. Roberts
and

L. G. McDonald

- 35
Several aspects of t]_e"F2_layer'(the region of

highest electrondensity) of the ionosphere are inves-

tigated. Contour maps of constant critical frequency

of the F 2 peak, and heightof the F 2 layerover the earth

reveal a seasonal variabilitywhich may be predictable.

The preliminary study shows that further work is nec-
as so aressary in this area and that diurnal, as well so)ar 7

cycle variations, must be established.

I. INTRODUCTION

Of the many problems encountered in the orbiting
of space vehicles, one of the most difficult is deter-

mining the atmospheric drag effects. One aspect of

this problem is the question of how coulomb drag
forces affect the vehicle. One of the first steps in re-

solving this problem is to determine the number of ions

above the earth's surface and how they vary season-

ally, diurnally, and with the solar cycle. The Space
Environment Group , Aero-Astrodynamics Labora-

tory, is carrying out a study of the electron density

( and therefore the supposed ion content) of the F 2 peak
of the ionosphere, as well as the height variabilities

involved.

The purpose of this study is to determine global

regions of high electron content, and to attempt to es-

tablish patterns for these points. The parameters

being studied are f F 2 r the maximum plasma [requency
• O

whmh can be reflected from the ionosphere, and h F,

the heightatwhichthis frequency is reflected. Monthly

average values of the critical frequency of the F 2 peak,

f F2, and associated height data, h'F, reported by the
p°articipating stations in the Annals of the International

Geophysical Year, were used in this analysis [ 1].

II. METHOD OF STUDY

About one hundred and twenty stations scattered

throughout the world supplied data on ionsopheric pa-

rameters during the IGY. A value of either fo F2 or
h'F for 1800 GMT was plotted at the geographical lo-

cation of the station on a graph of latitude versus long-

itude. On these graphs, isometric lines of either

constant frequency or heightwere drawn. The result-

ing graphs show the rough variation in the monthly
average value of the parameter over the globe. It is
obvious that such a method does not allow an examina-

tion of the fine structure. The fine structure in the

ionosphere either may be averaged out over a month's

time, or is not detectable between the widely scattered

points on the graph. There are places on the graph

where several stations are located in the same general

area, and at these points the contours become more

complex. One example of such a place is around 50 °

N latitude and 10 ° E longitude. In several of the graphs,
"kinks" are noticed in the otherwise smooth contours

at this point. This comes from trying to follow the

micro-patterns resulting from stations in near proxi-

mity.

Figures i through 8 are contours of either con-
stant frequency or height for the months of March,

June, September, and December, 1958. These months

are normally selected for studies, since March and

September are months of equinox and June and Decem-
ber are the solstice months.

The frequency contours represent electron densi-

ties at the F 2 peak of the ionosphere by the relation

N = 1.24x 104 f2 ,

where N is in electrons per cubic centimeter and f is

the reflected frequency in megacycles per second.

This equation negiects electron collision damping, but

is awholly acceptable approximation. Electron densi-

ties are measured by generating a sweep frequency

radio wave vertically into the ionosphere. The time

delayis a measure of the height, and the frequency is

a measure of the electron content at that height. As

the frequency is increased, the wave penetrates higher

into the ionosphere, until at a certain frequency a fur-

ther increase in frequency produces no reflection from

the ionosphere. This simply means that the maximum

electron content has been reached at this point, and the

signal is passing through the ionosphere into space.

The frequency at which this phenomenon occurs is the

ionospheric parameter f F 2.
O
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III. DAT._ ANALYSIS

Figures 1 and 2 are contours of constant critical

frequency and height, respectively, of the F 2 layer for

the month of March 1958. It is interesting that the

contours tend to form into either high or low cells at

various geographical locations throughout the map.

Figure 1 shows that the electron density reaches a

maximum during the day as expected; however, the

increase in electron density in the nighttime hours be-

ginning at about 70 ° E around the geomagnetic equator

• Lot_u_ (vt_

FIGURE l. CONTOURS OF CONSTANT FRE-

QUENCY (MEGACYCLES PER

SECOND) OF THE F 2 PEAK AT

1800 GMT FOR THE MONTH OF

MARCH 1958. THE HEAVYDASH-

ED LINE IS THE PROJECTED

GEOMAGNETIC EQUATOR

is not so easily explained. In the area outside of *30 °

latitude electron densities act as one might ordinarily

expect; that is, they decrease to a nighttime low. In

Figure 2 the height contours are generally lower during

the day than at night; however, one also observes the

contours of height beginning to increase around the

geomagnetic equator at about 80 °E longitude.

Figure 3 represents the critical frequency of the

F 2 peak during the month of June. The contours show

that at 1800 GMT the electron density begins to in-

crease around 100°E longitude, or about 00:40 LMT

whichonce againis long before sunrise. There is also

an anomalous increase in electron density at about 0 °

to 40°E longitude and 5 ° to 25°N latitude.

D
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FIGURE 2. CONTOURS OF CONSTANT HEIGHT OF

THE F 2 PEAK AT 1800 GMT FOR THE

MONTH OF MARCH 1958. THE HEAVY

DASHED LINE IS THE PROJECTED

GEOMAGNETIC EQUATOR. HEIGHTS

ARE IN KILOMETERS.
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FIGURE 3. CONTOURS OF CONSTANT FRE-

QUENCY (MEGACYCLES PER

...... ,Hr_ F 2

1800 GMT FOR THE MONTH OF

JUNE 1958. THE HEAVY DASHED

LINE IS THE PROJECTED GEO-

MAGNETIC EQUATOR.
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Figur_ 4 is the associated graph for h'F for the

month of June. This graph indicates a much more

variable ionospheric height structure than the previous

height graph. This graphis filledwith "cells"of maxi-

mum and minimum heights. Probably the most inter-

esting of these cells are those which occur from i00 °

to 180°W longitude. At about 40 degrees north there

is a low cellwith a heightof 190 kilometers. Near the

,coo _.T JUNE ,9_

FIGURE 4. CONTOURS OF CONSTANT HEIGHT OF

THE F 2 PEAK AT 1800 GMT FOR THE

MONTH OF JUNE 1958. THE HEAVY

DASHED LINE IS THE PROJECTED

GEOMAGNETIC EQUATOR. HEIGHTS

ARE IN KILOMETERS.

equator, there is a high cell with a central height of

310 kin; and at about 70 degrees south, there is an-

other high cell witha heightof 330 kilometers. During

the night the northern hemisphere tends to have cells

with high altitudes, whereas the south2rn hemisphere

has predominantly cells with low altitude.

The electron density distribution for the month of

September is shown in Figure 5. The highs which oc-

cur during the day tend to stretch into the night in the

northern hemisphere, but the southern hemisphere

tends to act fairly normal.

Figure 6 shows contours of constant height for this

same month, and appears to be fairly normal except

at about 10 ° north latitude and 30°E longitude where

there appears a very hi.'gh cell dropping to a low at

about 120°E longitude.

s
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FIGURE 5. CONTOURS OF CONSTANT FRE-

QUENCY (MEGACYCLES PER

SECOND) OF THE F 2 PEAK AT

1800 GMT FOR THE MONTH OF

SEPTEMBER 1958. THE HEAVY

DASHED LINE IS 1TIE PROJECTED

GEOMAGNETIC EQUATOR.

LO_G_'rUOE_ E

FIGURE 6. CONTOURS OF CONSTANT OF THE

F 2 PEAK AT 1800 GMT FOR THE

MONTH OF SEPTEMBER 1958. TttE

HEAVY DASttED LINE IS THE PRO-

JECTED GEOMAGNETIC EQUATOR.

HEIGHTS ARE IN KILOMETERS.
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The _ce_

'_ .

ldw of foF2 which occurs at about 20 ° N
latitude and 70°W longitude in Figure 7 is very unusual.
This indicates that during the day in the northern hem-

isphere there occurs a decrease in electron density at
this location. It is also interesting to notice the way
in which electron content tends to remain constant into

the night around the equator. There is even an in-

crease in electron density at about 80°E longitude.

1800 GUT DECEMeE, 195e

40 6O 8O IZO 140

FIGURE 7. CONTOURS. OF CONSTANT FREQUENCY

(MEGACYCLES PER SECOND) OF THE F 2 PEAK AT
1800 GMT FOR THE MONTH OF DECEMBER 1958.

THE HEAVY DASHED LINE IS THE PROJECTED
GEOMAGNETIC EQUATOR

Figure 8 shows the height of the F 2 peak during

December. The high cell which occurs in the northern

hemisphere during the day is unusual, and the night-

time low in the northern hemisphere with a high cell

in the nighttime southern hemisphere appears to be the

reverse of what was said of Figure 4.

In the frequency graphs the southern hemisphere

appears to be fairly consistentthroughout the yearwith

nighttime densities consistently lower than the daytime

densities. Around the equator the situation is. quite

different. In March there tends to be a buildup inelec-

tron density shortly after midnight, while in June,

September, and December, the electron density con-

tours tend to drag out into the night with little or no

change. In the northern hemisphere the contours tend

to be rather consistent above about 45 degrees, but

between l0 o Nand 45 ° N latitude the seasonal variability
is rather difficult to understand. It is also noticeable

N Bo
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i
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FIGURE 8. CONTOURS OF CONSTANT HEIGHT OF

THE F 2 PEAK AT 1800 GMT FOR THE
MONTH OF DECEMBER 1958. THE
HEAVY DASHED LINE IS THE PRO-

JECTED GEOMAGNETIC EQUATOR.
HEIGHTS ARE IN KILOMETERS.

that the geomagnetic equator tends to exert an influ-

ence on the data. In the morning hours the regions of

high electron density tend to lie south of the geomag-

netic equator, whereas in the afternoon the highs tend
to be north of the geomagnetic equator.

The height contours appear to be most complex

during the solstice months and least so around the

equinox months. March appears to be especially calm,
with September showing considerably more variation.

The main feature which is always present is the in-

crease in height of the F 2 peak just after nightfall just

north of the geomagnetic equator. During the day there
are generally low height cells except in the month of

June when a high cell occurred in the morning hours.

Generally, there appear to be nighttime 13w cells in

the northern hemisphere and nighttime high cells in

the southern hemisphere, except, once again, for the

month of June, when this situation is reversed.

It is apparent from the foregoing discussion that

more data are needed to make a more thorough eval-

uation of the ionospheric variations. We have looked

into the nighttime peak in height at the geomagnetic

equator and the electron density increases after sun-
set. These two anomalieswill be studiedto determine

the diurnal variations which each experiences.
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IV. FUTURE PLANS

Ionospheric data have been ordered from the V_orld
Data Center for the" International Year of the Quiet Sun.

These data will be analyzed in the same way as the

IGY data. They will also be compared with the IGY

data to study variations appearing in the data from

time of maximum solar activity to time of minimum

solar activity. The methods of analysis which will be

pursued in the continuationof this study will be (a) to

construct graphs for each month of the year 1958 to

study the progression of the various "cells" of high

and low electron densities and the associated height

contours, and (b) to construct graphs for each hour

of the day, Greenwich MeanTime, to study the diurnal

variations which occur as the sub-solar point pro-

gresses around the globe. This will be done for e_fch

of the four months of March, June, Septembe/:, and
December.

It is hoped that such a study program will produce

results which will aid in the refinement and optimiza-

tion of trajectory and orbital parameters required in
later missions.
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'ANE_ZAL[JATIONOFA TECHNIQUEFORPREDICTINGSOMEINDICATORSOFSOLARACTIVITY

By

JeanetteA. Scissum
and

: _6_ 24 R_bertE. Smith: I
SUMMARY

Results of prediction models must be monitored

to insure that specific failure or low success areas

are detected and corrected at the earliest possible time

in the developmental stage of the system. In this re-

port, results of the USAF Air Weather Service method

for predicting solar flare occurrence probabilities,

amount of 2800 MC solar noise flux, and geomagnetic

activity are comparedwith actual observations of these

parameters on the surface of the earth. It is concluded

that the technique is successful; however, there is a

tendency toward a persistency type of prediction, a not

unusual occurrence in the formulative stage of most

prediction techniques.I. INTRODUCTION

Authors of current publications on the properties

of the upper atmosphere have concluded from analyses
of satellite orbit perturbations and observations from

rocket-borne probes that above the level of diffusive

equilibrium, approximately 105 J=5 kilometers, the

density, temperature, and molecularweightare highly

dependent upon the level of solar activity. While the
amount of ultra-violet radiation from the sun (the

energy that actually causes the changes) cannot be
measured directly on the earth's surface, there are

certain indicators of the level of solar activity that can

and are being measured and recorded in a systematic

manner. These indicators are the number of sunspots

visible on the solar disc, the amount of 10.7 centi-

meter solar radio noise flux, and the three-hourly geo-

magnetic activity.

Several models for computing or predicting the

temporal and spatial variability of the natural space

environment parameters (density, temperature, and
molecular weight) have been derived which are func-

tions ot either the known or predicted values of these

indicators. Knownvalues of these parameters are re-

quired in post-flight mission evaluation studies while

predicted values are required in pre-flight mission de-

termination, orbital lifetime prediction, and launch

condition studies. Inasmuch as the natural environ-

mentparameter models are based on numerical values

of these indicators, highly accurate methods for pre-

dictingvalues of these indicators,as far in advance as
possible, are necessary.

Further, mission success is entirely dependent
upon the reliable performance of both material and

personnel in the harsh environment of outer space,

particularly, the radiation environment, and more spe-

cifically, the radiation environment during and after
a large solar flare or solar proton event. The accu-

rate and reliable prediction of these events will greatly

enhance the probability of mission success.

Prediction models, expecially thoseinthe devel-

opmental stage, must be monitored continuously and

rigorously to insure that acceptable accuracy levels

are attained. This report presents an attempt to sub-

stantiate one method-of predicting these solar activity
indicators.

II. DISCUSSION

Headquarters, Air Weather Service, Scott Air

Force Base, Illinois, has developed a method for pre-

dicting these various solar activity indicators. Each

day of the work week a message containing the follow-

ing information is transmitted to several using agen-
cies:

Part I: Current observations of activity on the
solar disc as reported by the High Altitude Observa-

tory at Boulder, Colorado.

Part II: Class 2 or greater solar flare and solar

proton event probabilities during the five-day period

following the day of transmission of the message.

Part III: The 2800 MC solar radio noise flux for

the day of transmission as recorded at Ottawa, Canada,

and the predicted values for the three succeeding days.

Part IV: The geomagnetic index, Ak, for the day
of transmission as recorded by Ft. Monmouth, New

Jersey, and the predicted values of ap for the three
succeeding days.
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Information from these four parts of the message

forthe months of March, April, and May is presented

graphically as follows.

Graph i compares one-, two-, three-, four-, and

five-day predictions of the probability of occurrence

with actual occurrences of solar flares. There was

only one Class 2 flare during this period; it occurred

on the fourth day of a period during which a fifteen per-

cent probability of occurrence was forecast. A fifty

percent probability of occurrence was forecast for One

five-day period and, while no Class 2 or greater flare

occurred, botha Class i and a Class l+ flare occurred

on the fifth day of the forecast period.

j,
I

, . u_. AcLu_l OC[_iIL'FChCC

Four D_j pru_icti_:_

_ T:,rCL: L_, PreaictiuJ.

_ One I)a:, Predic_ioL

GRAPH i. PERCENT PROBABILITY VS. ACTUAL

OCCURRENCE OF SOLAR FLARES

Graph 2 compares one-, two-, and three-day pre-

dictions with observed values of the 2800 MC solar

radio noise flux emanating from the sun. The predicted

values are generally in phase with the observed values;

however, the only major change in noise level predicted

was one, two, and three days, respectively, after the

actual day of occurrence, indicating a tendency towards

a persistency or no change type of forecast.

 nnnnhn

GRAPH 2. PHE DICTED VS. ACTUAL 2800 MC

SOLAR RADIO NOISE FLUX

Graph 3 compares, one-, two-, and three-day

predictedvaluesofapwith observed values of A k. All

GRAPH 3. PREDICTED VALUES OF a. VS. ACT-

UAL VALUES OF A k P
three prediction profiles show a close phase relation-

ship with the observed values; however, it is impos-

sible to determine a percentage accuracy because the

A k value reported in the message is merely an indi-

cator of the predicted ap, and there is no scale rela-
tionship on which a more definite comparison can be

based.
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B'reaks in the data presented on all three graphs

are due to (1) communicationfailures duringthe early

stages of the program, and/or (2) the present concept

of operationwhereby forecasts are made only on norm-

alwork days. As the data requirements increase, the

operational capability will be increased to seven days
per week.

III. CONCLUSIONS

Table I shows that the one-day prediction is the

most accurate with the two- and three-day accuracies

usually decreasing sequentially. This result is in gen-

eral agreement with most prediction methods in the

developmental stages.

Preliminary conclusions from this admittedly
short period are that the average overall accuracy of

TABLE I. 2800 MC PREDICTION ACCURACY

March 1964 _-A_-___{I--I_-9_-64

97.7% 98.5%

Overall

96.5% i 97.8%
95.8% 98.1%

96.7% _I 98.1%

One day 98.37%

Two day 97.8% 97.36%

Three day 96.6% 96.82%

Month 97.8% 97.53%

the prediction method decreases as the time period for

which the forecast is valid increases. Further, it

must be remembered that this verification covers only

a time period duringwhich the solar activity is a very

minimum; therefore, the conclusions as to the accuracy

of the method should not be applied unreservedly to a

period of high solar activity.

This verification program is being continued and

periodic reports will be issued as the data sample in-

creases and the solar activity level increases.
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A METEOROID FLUX AND PUNCTURE MODEL FOR NEAR-EARTH AND CISLUNAR'SPACE

by

Charles C. Dalton

SUMMARY Symbol Definition

N65-Z4137
x 2 Angle of impact respect to the normal.

Presented in this report is a model for the mean

cumulative flux of meteoroids which includes the ap- p Wall thickness in centimeters punctured

propriate earth-shielding factor as a function of dis- by meteoroids of mass m.

tance from the surface of the earth and which is as

accurate as present information will support. A punc-

ture model is presented forvehicles with homogeneous

metallic walls. The results can be used to determine

the no-puncture probability for particular vehicles and

missions when the relation between bumper or sand-

wich-typewall structures and the equivalent thickness /

of a horr_geneous metallic wall has been established//

DEFINITION OF SYMBOLS

Symbol Definition

m Meteoroid mass in grams.

F
S

Meteoroid impacts per square meter of

randomly oriented surface per second of

mass equal to or greater than m

h Distance from the surface of the earth in

kilometers.

_2 Partial derivative of log F
s

to log m.

with respect

/33

Pp

Value of log F for vanishing log m.
S

Meteoroid density in grams per cubic

centimeter.

V
a

Meteoroid geocentric velocity in kilo-

meters per second.

V

C
Meteoroid velocity relative to a moving

vehicle, km per second.

PO
Meteoroid crater depth in thick walls in

centimeters

Pt Wall density in grams per cubic centi-

meter.

H
t

Wall hardness in Brinell units.

Meteoroid puncture flux ice r second per

square meter total area of a randomly

oriented surface.

I. INTRODUCTION

The meteoroid hazard to spacevehicles, to equip-

ment and structures in space, and to astronauts con-

tinues to be uncertain. It is expected that better in-

formation will become available from time to time,

and consequent revision will be appropriate. A re-

lation between bumper or sandwich-type wall struc-

tures and the equivalent thickness of a homogeneous

metallic wall has been suggested by Nysmith and

Summers [1]. Although presentknowledge about the

mechanics- of-materials aspects of meteoroid impact

is not adequate for some design purposes, most of the

uncertainty about the meteoroid hazard is due to the

continued inability to interpret definitively the rele-

vant astronomical and space data which have been

published during the last ten years. This contention is

supported by tho error propagation in Reference 2.

The sufficiently definitive interpretation may not be

forthcoming until after more direct and more precise

space measurements have been made.

Whipple's [3] relation between the flux of small

meteoroids and distance from the surface of the earth,

combined with the estimates by McCracken and Dubin

[4] and by Hawkins [5] for the relation between the

fluxes of larger meteoroids near the earth and on the

moon, is used to extend Whipple's [61 flux model to

include the distance from the surface of the earth as

a parameter. The model so obtained is substituted

for the flux model in Reference 2 to find the relation

between material parameters and puncture flux. All

logarithms have been converted to base ten. Errors

on indicated values are approximately normally dis-

tributed, and probable errors are indicated. The in-

dicated numerical estimates of uncertainty were es-

tablished by the method given in Reference 2.
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:II.' ML_EORbID FLIfX MODEL FOR _ISLUI_AR

• SPACE

With data from rocket firings, satellites, and

spaceprobes, Whipple [3] found that the meanimpact

rate F s on randomly oriented s_q_rfaces, including all
particles greater than mass i0 gram and adjusted

for the differing sensitivities of the equipments, varies
inverselywith the i. 4 power of the distance h from the

surface of the earth; and that at some distance greater
than h = 105 kilometers, the impact rates approximate
those expected from calculations on the zodiacal cloud.

Also Whipple [ 6], by adjusting the initial mass of the

zero-visual-magnitude meteor from 25 grams to i

gram in Hawkins and Upton's [7] flux model based on

photographic meteors, and by introducing a near-earth

shielding factor of i/2, found the following mean flux

model for a randomlyoriented surface near the earth:

IogF = -i.341ogm- 14.48. (i)
S

At the seventh meeting of the NASA Meteoroid

Technology Advisory Working Groupwhichwas held at

Goddard Space Flight Center on June 17 and 18, 1964,

(Secretary: Mr. M. Charak, Code RV-I, OART,
NASA Headquarters, Washington, D. C.) a motion

was adopted that,for present considerations of mete-

oroid hazard near the earth, a non-segmented linear

relation between log F s and logmwill be assumed. It
seems reasonable to apply this relationship throughout
cislunar space with the provision that both slope and

interceptcanbe functions of location; i.e.,

logF = fl21°gm+/?3 _-1.3, (2)
S

where both slope /72 and intercept/?3 are independent of
m.

Briggs [8] found that zodiacal-light observations

are consistentwith the theoretical apparent brightness
due to scattered sunlight from the steady-state system

of particles In the solar system under the action of the
Poynting-Robertson effect when it was assumed that

the concentration of particles with radii equal to or

greater than 50 microns is inversely proportional to
mass m at a distance of one astronomical unit from

the sun. This would correspond to a negative unit

value of /?2 in Eq. 2 along the earth's orbit but not
necessarily near the earth. Since the 50 microns

radius entailed a particle density of 0.1, Briggs' [8]

resultis with respect to meteoroidswith log m equal
to or greater than -7.3.

Hawkins' [5] derivation from existing meteorite

data shows thatthe flux of impacts of large stone mete-

oroids onto the earth with mass equal to or greater

than specified mass in kilograms is inversely pro-

portional to the specified mass. Also Hawkins [5]
indicates that the flux of large bodies onto the moon
should be half as much as the flux onto the earth. It

seems reasonable to assume that t[_e flux onto the moon .

of meteoroids with mass equal to or greater than one

gram may be only 40 percent of the correspondingval-
ue onto the earth.

McCrackenand Dubin [4] in a study of"Dust
Bombardment on the Lunar Surface" stated: "The

geocentric distance to which the high fluxes measurec[

near the earth apply is not known; the fluxes of small

dust particles on the moon probably fall between the

values indicated by the zodiacal light studies and the
values indicated by the direct measurements obtained

in the vicinity of the earth. The fluxes are, however,

thought to be close to those indicated by the zodiacal

light studies," These results can be generated by

assuming that, at the moon's distance from the earth,

the values of f12 and fi3 in Eq. 2 are -1 and 40 percent

of the value of/?3 in Eq. 1, respectively; i.e.,

log F =-Iogm- 14.58_- 1.3. (3)
S

The next step toward establishing a meteoroid flux

model for cislunar space is to write Eq. 2 as an ap-
propriate function of distance h in kilometers from the

surface of the earth so that Eqs. 1 and 3 are found

when the values of log h are 2 and 5.59, respectively.

Three approaches toward accomplishing this purpose

could be pursued: (i) a theoretical approach based

onconsiderations of particle dynamics, (2) an em-
pirical approach based on direct measurements in

space, and (3) a practicalapproach basedon a con-
sideration of present limitations of both the theoreti-

cal approach and the empirical approach.

The theoretical approach toward establishing a
meteoroid flux model for cislunar space is not satis-

factory because the distributions of dynamic param-
eters have not been definitively established, and the

physical basis bywhich they might be established from

theoretical considerations is problematical. Velocity
information is available only from photographic and

radar meteors, and it is not yet known whether the

geocentric velocities of the smaller particles (those

which have been detected in space) tend to be higher
or lower.

The empirical approach based on direct measure-

ments in space is so far only a little more satisfactory
than the theoretical approach because the measure-

ments (1) have been of uncertain interpretation with

respect to particle mass, (2) have been limited to

the small particles, (3) may have had considerable
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uncertainty in the threshold of mass sensitivity from

time to time and from experiment to experiment, and

(4) have not been very well distributed throughout

cislunar space.

( ,F

The practical approach in establishing f12 and fi3 in

Eq. 2 as functions of the distance h from the surface

of the earth is as follows: (i) Eq. 2 must reduce to

Eqs. i and 3when the values of Iogh are 2 and 5.59,

respectively; (2) the partial derivative of log F with
s

respect to log hmust be -i. 4when log hand log mare

2 and -9, respectively, in agreement with Whipple's

[3] empirical model; (3) log F is assumed to be a
continuous monotonic decreasing _unetion of log h and

the rate of decrease of log F s with respect to log h is

assumed to decrease with respect to log h throughout

cislunar space. These results are given by the follow-

ing expressions for f12 and fi3:

f12 = - [ i + 0.34e 0" 26(Iog h -2)_0.24(Iog h -2)] (4)

fi3 = - 0. 028 (log h -2) - 14.48, (5)

which are illustrated graphically over the interval

2 -< log h -< 6 in Figure 1. Corresponding values for

log F s by Eq. 2 are illustrated in Figure 2 by a family
of curves for the following values of log m: - 10, -7.5,

-5, -2.5, and 0.

III. NUMERICAL VALUES FROM REFERENCE 2

WITH SUBSTITUTE CISLUNAR FLUX

MODEL

log pp -0.35_0.67 = log 0.44_0.67 (6)

logv = 1.48_0.13 =1og30_=0. i3 (7)
a

v = v (8)

c a

log Po = (1/3) log (pp m/Pt H t) + (0. 500 * 0. 075)

log [(v/4.88) cosx2]+ 0.778 • 0.054 (9)
C

log p = log Po + 0.200 • 0.067= log 1.59_ 0.067 (10)

Therefore, with random orientation, one obtains

the following formulas for the hazard from meteoroids

in cislunar space:

f(x2) = sin 2x 2 = probability density function

for x 2 (11)

log Po = (1/3) log (m/PtH t) + 0.95 _= 0.26 (12)

logp = (1/3) log (m/PtH t) + 1.15 _- 0.26 (13)

log _ = f12[_log(p3ptH+) - 3.'45 i +f13_:2"0,_ (14)
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FIGURE i. SLOPE f12 AND INTERCEPT /_3 FOR LOG

F AS A LINEAR FUNCTION OF LOG m
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FIGURE 2. FLUX F s OF METEOROIDS PER SQUARE

METER PER SECOND WITH MASS EQUAL TO OR

GREATER THAN m GRAMS AT h KILOMETERS

ABOVE THE SURFACE OF THE EARTH

WITH RANDOM ORIENTATION
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m o

where _b i_t the p_ncture fluxand Pt' Ht' and p are wall

specific density, Brinell hardness, and thickness in

centimeters, respectively.

IV. ILLUSTRATION

With aluminum 2219-T87, for which the density

p and hardness H are 2.82and i28, respectively, and
t

with the expressions for f12 and/33 from Eqs. 4 and 5

substituted into Eq. i4, one obtains the results for log

_b as a functionof log hwhichare illustrated in Figure

3 by a family of curves for the followingvalues of wall

thickness p: 0:001, 0.0i, 0.1, and 1 centimeter.

V. CONCLUSIONS

The meteoroid hazard to space vehicles, to equip-

ment and structures in space, and to astronauts in cis-

lunar space is not well known. The puncture flux

through specified thicknesses of aluminum 2219-T87,

as illustrated in Figure 3, is believed to be accurate

to within about two orders of magnitude probable error.

-2
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-12

-14

i!

--.[_ ....

:.t!
,,i : i!_i

' 5::2

11111;11

iiiilIi_i
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FIGURE 3. PUNCTURE FLUX _b OF METEOROIDS

PER SQUARE METER PER SECOND

THROUGH A RANDOMLY ORIENTED

WALL OF ALUMINUM 2219-T87 OF p

CENTIMETERS THICKNESS AT h

KILOMETERS ABOVE THE SURFACE

OF THE EARTH

In addition to the hazard from primary meteoroids,

which has been considered in this article, there may

be considerable further hazard on or very near the

moon due to secondary particles which are splattered

up from the lunar surface.
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SURFACE PROPERTIES OF TURBULENCE IN THE BOUNDARY LJkYER

By

Dr. Hans A. Panofsky*

SUMMARY Symbol
B

N65- 24 138 Sv O,
Presented in this paper is a aiscussi_n_n wi_l

variations in the surface boundary layer where the

vertical variation of stress is negligible. Relation-

ships between mean wind speed profiles, gust factors,

and standard deviations and spectra of horizontal wind

components (lateral and longitudinal) are discussed

as a function of stability and terrain conditions. _k _

LIST OF SYMBOLS

Symbol

U*

Definit ion

friction velocity defined by _T
P

stress in horizontal direction due to wind

density of air

Z
O

V

roughness parameter

wind speed

z height

in base of natural logarithm

Ri Richardson Number

(r
u

%

x, y, z

standard deviation of u component of wind

standard deviation of w component of wind

coordinate system

ffOl
standard deviation of lateral wind direction

(azimuth)

¢r0
standard deviation of vertical wind direc-

tion (elevation)

u, v, w wind components along, x, y, z axes,

respectively

n wave number

Su(n) spectral density of u-component of wind as
a function of wave number n

E

k

Definition

spectral density of v-component of wind as
a function of wave number n

dissipation of turbulent energy

von Karman's constant which usually has

the value 0.4

I. INTRODUCTION

The following will describe some of the charac-
teristics of the "surface boundary layer," defined as

the layer in which the vertical variation of stress is

negligible. Thus, the stress, or better the friction
velocity u* defined by

U* =

P

can be used as a parameter. It is generally derived

from the wind profile or, if available, from the cor-
relation between longitudinal and vertical wind.

Additional parameters are the roughness length,

Zo, and the Richardson number (or the ratio of height
to Monin length) which describe the relative impor-
tance of mechanical turbulence and convection. Dur-

ing high wind conditions, convection is relatively small
and the Richardson number is also small, so that the

properties observed in "neutral" stratification are a

good approximation. Only z o and u* are then the im-
portant parameters, and once they are given, every-

thing else is well determined.

A true constant stress layer can be assumed only

over homogeneous terrain. If air has recently left

rough terrain, the stress will increase with height up
to an interface above which is is more or less constant.

Below the interface, turbulence characteristics are

those of smooth air; above the interface, they are

those of the rough air. The typical slope of such in-

terfaces is 1/'i0.

*Professor of Meteorology, Pennsylvania State

University, University Park, Pennsylvania, and con-
sultant to Aero-Astrophysics'Office.
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' II.' WileD PI_OFILES'OVER ROUGH TERRAIN

A. NEUTRAL AIR

In neutral air, the wind profile is given by

V = 2.5u* In z__ (1)
Z

O

where V is the wind speed and In is base of natural

log. Over uniform terrain, z ° is a constant which
may change intime only if the roughness changes with

time. In principle, the roughness length can be de-

retrained from any set of two wind observations at two

heights in neutral air. In practice, itis better to cal-

ibrate the site by taking many tests of such observa-

tions and then treat z o as known. Then, given Zo,

each wind observation allows estimation of u* by

equation ( t).

B. CORRECTION FOR NONADIABATIC (DIA-

BATIC) CONDITIONS

For diabatic conditions, equation (i) becomes

V = 2.5 u* In z_ _ 9 (Ri), (2)
Z o

where _ (Ri) is a universal function of Richardson

number Ri, which is positive in unstable air and neg-

ative in stable air. It is well known in unstable air

only. Once z o is known, u* can be computed from a

wind observation, subject to a correction for Richard-

son number. This requires measurement of the lapse

rate. It turns out that the Richardson number can be

estimated from the lapse rate and a single wind. For

fast winds, the Richardson number correction is usu-

ally small.

In unstable air, u* is poorly determined by one

measured wind.

III. WIND PROFILE OVER NONUNIFORM TERRAIN

Over nonuniform terrain, with fast winds, a sim-

ple logarithmic profile will not fit. The lowest por-

tion will be representative of the local roughness, the

next portion to the roughness farther upstream, the

next to the roughness even farther away and so forth.

In the relatively simple case of a sharp change of

roughness (with uniform roughness on either side),

the profile can be approximated by two logarithmic

portions with a sharp division in between. For ex-

ample, if the local roughness (at th_ site 5f measure-

ment) is small, the lower part of the profile will have

a slope corresponding to small u*. The upper part

will have'a different slope reflecting the larger u* of

the ground farther upstream.

IV. STANDARD DEVIATIONS OF WIND COMPO-

NENTS

Let u, v, and w stand for the wind components in

the x, y, and z directions, the x-direction being par-

allel to the mean wind. (Rotation of the mean wind

with height in the surface layer is negligible. )

The following give standard deviations in neutral

air (to very good approximations) at many sites:

cr = 2.5u* (3)
U

cr = 2.2 u* (4)
V

_w= 1.1u* (5)

Using equation (1) for neutral air, we can write in-

stead:

Cru/V = 1. O/ln zz (6)
0

% =%/v = SS/lnZ• z (7)
O

_0 =¢w/V= "44/ln Z_z " • (8)
O

Here % and (_0 are the standard deviations of wind

direction, lateral and vertical, respectively, in rad-

ians. Note that all the quantities in equations (6) -

(8) decrease upward in neutral air, but the quantities

in (3) - (5) are constants ( over homogeneous terrain).

Over heterogeneous terrain, all the standard devia-

tions would increase upward if the local roughness is

smooth and the roughness upstream is large. Note

also that the quantities in equations (6) - (8) are in-

dependent of wind increase with z .
O

Since frequency distributions of u, v, and w are

approximately Gaussian, eq-_atio.n__ (3) - (8) can be

used to derive gust factors. For example, a speed of

V + 2 (r u would give the value exceeded 2.5 percent of

the time. The gust factor would be i + 2.5 u_V= i +

2/ln __z .

Z o
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Equations (3) - (8) must be corrected for non-
zero Richar_on ntu_lber, corrections which are small

in strong winds over rough terrain. First, equations

(3) - (5) must be corrected. The correction is very

. small for ¢rw. The av equation might double in un-

stable air; for au the maximum correction is about
1.5. If we then proceed to equations (6) - (8), a

further correction is needed in that equation (2) must

be used for u* in equations (3) - (5) instead of equa-

tion (1). This gives an additional increase for the
quantities in equations (6) - (8) in unstable air.

V. SPECTRA OF THE HORIZONTAL WIND COM-

PONE-NTS

Of most interest here are the high frequencies

(periods of i0 seconds and less). Here, the conclu-

sions from the Kolmogorov theory of the inertial sub-

range are in good agreement with observations. In

fact, they even apply to longer periods of V.

Further, the "universal" constants in these equa-
tions are now well known. We thus have

nS (n)
U

and

n Sv(n)

= . i5 ¢2/3 (V)-2/3 (9)

= • 19 e2/3 (V)-2/3 . (i0)

Here the left sides are the spectra multiplied by fre-

quency, which come out in units of velocity squared_

n is the wave number, S(n) is the spectral density as

a function of n, and ¢ is the dissipation, which under

neutral conditions is given by

= 2.5 u*3/kz. (tl)

With equation (i) , we finally have,

Su(n) =

and

Sv(n) =

• 044 vS/3(z) -2/3 n -5/3 (i2)

• 056V8/3(z) -2/3 -5/3n . (13)

For longer wave lengths, it will suffice to make

some general statement_o The horizontal scale of

lateral velocity is almost independent of height; that

of longitudinal velocity increases slowly with height•
The low-frequency portion of the spectra is mostly

dependent on lapse rate, particularly for the lateral

components. Infact, in neutral air, lateral 'wind' co_-

ponents have negligible low-frequency energy.

VI. VERTICAL STRUCTURE OF TURBULENCE

The following is based only on tower data from

the Brookhaven National Laboratory, Upton, Long Is-

land, New York, and may not be representative of
other locations. Under unstable conditions, correla-

tion coefficients between longitudinal wind c omponents

at different heights are approximately equal for equal

height ratios (23 and 46 m is about the same as 46 m

and 91 m). This implies that the vertical scale is ap-

proximately a linear function of height and that turbu-
lence is homogeneous on a logarithmic height scale.

For neutral conditions, a _z scale leads to more

nearly homogeneous turbulence, suggesting that the
2/3

scale of turbulence varies as z

Studies of cross spectra between different levels

lead to the following conclusions:

I. Eddies slope down-wind by about 45 degrees

on the average so that maximum correlation exists

for upper winds preceding lower winds.

2. Separate analysis of eddies of different size

shows that small eddies are nearly isotropic. Large

eddies are elongated horizontally. The horizontal axis

is much larger than the vertical axis in stable air,

slightly larger in neutral air, and slightly shorter than

the vertical axis, only in extremely unstable air.

3. If we are interested only in high-frequency

variations (say, horizontal wave lengths of t0 m), the
vertical wave length is about the same. Vertical cor-

relations would drop to zero after about 1/4 wave

length, and winds more than a quarter wave length

apart can be taken to be independent of each other.

Although there is not yet any proof, similar conclu-

sions are likely for lateral wind components. Only

extremely slow fluctuations of wind components would

be in phase all along the vehicle. Because of the ver-

tical elongation, eddies of the same horizontal wave

length are more vertically coherent in unstable than

in stable air. Hence, the total correlation coefficients

are also greater in unstable than in stable air. But,

as mentioned before, high-frequency variations at dif-
ferent levels tend to be fairly independent of each

other under all conditions.

Many more studies of coherence between wind

components at various heights are urgently needed.
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, vii. ' PRACTICAL EXAMPLE

J

Suppose that future measurements at Cape Ken-

nedy had established that the roughness length there,

for a certain wind direction, is 1 m. Then suppose

that the wind at 200 ft (60 meters) was 10 m/s. Then

equation (f) gives a u* of .98 m/s. Equation (6)

shows that au/V is . 244, and the gust factor (for 2.5
percent exceedance) is 1.49. The spectrum estimate

in m2sec -2 per unit cycle/s at a frequency of one

cycle/s comes out as f. 32, equation (12) °

103



">

ESTIMATION IN MIXTURES OF TWO POISSON DISTRIBUTI(_NS

By

A. Clifford Cohen, Jr.*

SUMMARY.

N65 24139
Techniques to resolve a mixture _f two sample

distributions into their respective components have

applications in the statistical analysis of atmospheric

data. Dealt with in this report is the problem of es-

timating parameters of a mixed (compound) distribu-

tion consisting of two Poisson components. Estimators

based on the first three sample moments and estima-

tors based on the first two sample moments plus the

sample zero-frequency are considered. A computing and where

routine is outlined for solving the estimating equations /_

involved in the latter case. _A( i_ / R

k] =
x=0

I. THE PROBABILITY FUNCTION //
V

Let p and X designate the parameters of two

Poisson distributions that have been combined in the

proportions a and (1 - 5), respectively, to form a

mixed (compound) distribution. The probability func-

tion of the resulting distribution may be written as

-X X

f(x)= a e---'-_--+ - X' " (I)X' (I (x) e X

For convenience, and without any loss of generality,

we let p > X.

= (2-x)/(p-x),

O- F = _'[2]'

x(O 2- r) - I" 0 = P [31 '

(2)

where

0 = p+ X, and F = pX , (3)

x(x- 1) ... (x-k+ 1)nx/n, (4)

in which R is the largest observed (sample) value of

x, nx is the sample frequency of x, and n is the total
R

sample size; i.e., n= _ nx. In the interest of a

x=0

simpler notation, _ has been written in place of vii].

On solving the last two equations of (2) simul-

taneously for F and 0, it follows that

O* = (1)[3 ] - X V[2])/(P[2 ] - _2) ,

r* _ o*
= - '[2]'

(5)

II. ESTIMATORS BASED ON FIRST THREE MO-

ME NTS

Estimators for the parameters of this distribution

based on the first three sample moments were given

by Rider [2]. Through the use of factorial rather than

ordinary moments, the writer [ 1] subsequently sim-

plified Rider's original estimating equations to the

following form:

where the asterisks (*) distinguish estimators from

the parameters being estimated. As shown in [1], the

required estimators of p and X follow from (3) and (5)

as

I ,2
p* = _(0" + 40 - 4P ''_) ,

1 0* _]0 ''2 4F*)
x* = 7( - - •

(6)

* Professor of Mathematics, University of Geor-

gia, Athens, Georgia. The research reported in this

paper was performed under NASA Contract NAS8-

t1175 with the Aero-A strophys ics Office, Ae ro-A stro-

dynamics Laboratory, Marshall Space Flight Center,

Huntsville, Alabama. Mr. Orvel E. Smith is the

NASA contract monitor.

These estimators are recognized as the two roots of

a quadratic equation, with roots r 1 and r2, which may

be written as

y2_ O*Y + F* = 0, (7)
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wl_ere' p*_-- r 1 and X'_ ='r2(r l > r2). The proportion-

ality'parameter a is estimated from the first equa-

tion of (2) as a* = (x- X*)/(p* - X*).

III. ESTIMATORS BASED ON FIRST TWO MOMENTS

AND THE ZERO FREQUENCY

It is well known that the higher sample moments

are subject to appreciable sampling errors. In an

effort to improve on the efficiency of the three-moment

estimators of the preceding section, the writer [1]

obtained the following estimating equation which is

based on the first two sample moments and the sample

zero-frequency

- X no/n- e-X

G(X) - k -G(X) -X
e -e

(8)

in which

v[2 ] - _x

G(X) - _ - X (9)

where no is the sample zero-frequency. Equation (8)
can be solved for 2,** using standard iterative pro-

cedures, and with _** thus determined, estimators
of p and a follow as

U** = ["[2]-_X**]/(_- X**) ,

a** = (_- X**)/(p** - X_'*) .

(10)

The double asterisks (**) distinguish estimators of
this section from the three-moment estimators of

Section II and from the parameters being estimated.

Unfortunately, no simple procedure for solving equa-

tion (8) has been devised. However, a computer rou-

tine has been developed based on iterative procedures

described by Whittaker and Robinson [3] to solve equa-

tion (8) using as a first approximation the three-

moment estimate of X given by equation (6).

IV. COMPUTATIONAL PROCEDURES

The ^ I,._-.'^ Li_tll_t_t_llU_nb_ti_o_u_un of the "......... _- "_' _,l,,a_,,,g--*'_"-

equation (8) from Section III provides an interesting

illustration of iterative numerical computation tech-

niques described by Whittaker and Robinson [3]. To
facilitate its solution, the denominator of the left side

of (8) is interchanged with the numerator of the right

side, and the resulting equation becomes

x - X G(_t) - X
-X -G(X) -Xn/n-e e -e

o

(tl)

where G(M remains as given by equation (9).

Equation (11) might be condensed to the form

L(X) = R(X) whei_e

L(X) - x- k and R(X) = G(X) - X (12)
-k ' -G(X) -X "

n /n-e e -e
o

Graphs of the two functions L(M and R(M are

essentially as given in Figure t.

L(k)

L(kl) [ _e_ /

I

'I
I I

I I I

o

FIGURE 1. L(X) AND R(X) FUNCTIONS

We begin with an initial approximation Xo and
iterate toward the value X** as described by Whitta-

ker and Robinson [3, pp. 8t-83]. The three-moment

estimate of k given by equation (6) of Section II pro-

vides a satisfactory value for Xo" This initialapprox-
imation is substit[lted into the second equation of (12)

to obtain Ro, which is merely an abbreviated notation
for R(ko). We then solve the equation

L(XI) = R ° (13)

to obtain Xi, the next approximation. This cycle is
repeated as many times as necessary to attain the de-

sired degree of accuracy. Equation (t3) is itself a

transcendental equation, though somewhat simpler in

form than the original equation (11). It is amenable to

solution by the Newton-Raphson method [3, page 84-

86]. For the ith cycle of iteration, the equation cor-

responding to (13) bccomes

1

L(ki) - - Ri_ 1 , (t4)
n /n- e -ki

o
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which may be written as

f(Xi) = O,

where

f(ki) = k i - Ri_le-ki - Ci_ I

and where

(15)

Ci_ 1 = (x- Ri_ 1 no/n) •

Equation (14) may be readily solved using the

Newton-Raphson method, where ki:r+l, the (r+l) st

iterant to ki, is given by

Xi:r+ 1 = X. - /f'l:r f(Xi:r) (ki:r) "

The first derivative of f(ki) follows from (15) as

e-ki
f'(ki) = i + Ri_ 1

Accordingly,

-Ii: r

Xi: r - Ri_ I e - Ci_ I

Xi:r+ I = k.1:r - -I i (16)

i +Ri_l e

As an initial approximation ki: 0 to ki, it will

usuallybe satisfactory to let ki: 0 = ki_ 1. The Newton-

Raphson iterative technique is continued through as

many cycles as may be necessary to attain the desired

accuracy in k i. More specifically, this subroutine is

terminated at the end of the rth cycle, where this is

the first cycle for which

Ll: r - Ri_ll < 61 ,

in which 61 specifies the maximum permissible abso-

lute value deviation. With k i thus determined, we cal-

culate Ri, set up the new equation L(ki+l) = R i and

the primary routine is continued through k cycles,

where the kth cycle is the first for which

¥. AN ILLUSTRA'FIVE P[_OBL_M ' '

To illustrate the application of his three-moment

estimators, Rider [2] chose an example constructed

by mixing equal proportions of two Poisson distribu-

tions with p = 1.5 and X = 0.5, respectively. These

data are as follows:

xL0i  1017n 830 638 3 137 49 15 3 t
X

In summary, n= 2000, n o = 830, x = 0.9995, _[2] =

1. 243 and _I3] = 1. 734. Direct substitution of these

values into equations ( 5), (6) and (7) yields the three-

moment estimates

p* = 1.4766563,

X* = 0.47765894,

a':' = 0.52236479.

These results differ slightly from those given by Rider

due apparently to small round-off errors in his cal-

culations.

Estimates based onthefirst two moments and the

zero frequency calculated with the aid of an electronic

computer, programmed in accordance with the com-

puting routine of Section IV, are

p = 1. 4936,

k** = 0.4956,

_** = 0.5049.

These estimates are in much closer agreement with

theactualpopulationparameters p = 1.5, k = 0.5, and

= 0.5 than the three-moment estimates. Investiga-

tions are continuing with regard to the relative ef-

ficiency of the three-moment and the two-moment plus

zero-frequency estimates, but at least, in the present

instance where a large proportion of the population is

inthe zero class, the two-moment plus zero-frequency

estimates are to be preferred.

L k - Rkl < 6 2 ,

where 52 specifies the maximum allowable absolute

value deviation. The required estimate of k is then

X* * = kk •
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CHARACTERISTIC FEATURES OF SOME PERIODIC ORBITS IN THE RESTRICTED THREE-B'oDY_PROI_LE'M

by

SUM"MAI_Y "" _.- U

Wilton E. Causey

Presented in this report are earth-moon orbits

which, when referred to a rotating coordinate system,

return periodically to their original set of state var-

iables. Such orbits offer repeated approaches to both
earth and moon and could be used for instrumented

exploration of earth-moon space for meteoroid con-
radiation belts and other usefulfi_ormO-centration,

to
I. INTRODUCTION

Characteristic features such as the period of the

orbit, time spent in the region between earth and

moon, close approach distance to the moon, and clo-

sest approach distance to the earth vary for each fam-

ily of periodic orbits. The orbits presented in this

paper have periods of 1 to 3 months and they have at
least one perpendicular crossing of the earth-moon

line on the back side of the moon. The orbits con-

tained herein represent only a small portion of the

families of periodic orbits that are possible in the re-

stricted three body problem, and it should not be in-

ferred that these are the only orbits of interest.
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A. EXISTENCE

II. DISCUSSION

The existence of certain periodic orbits in

the restricted three-body problem has been known for

a long time. Poincare" referred to orbits which re-

duce to circles when the disturbance from the more

distant body becomes zero as "solutions de la premiere

sorte" [i]. These orbits can be near either of the

finite masses, but not both. Arenstorf [2] proved the

existence of periodic solutions of the so-called second

kind which are near rotating Keplerian ellipses. It is

possible for these orbits to pass close to both finite

masses, and therefore, for lunar exploration, they
are more attractive than orbits of the first kind. Or-
bits of the first and second kind exist even if one of

the bodies becomes massless. Contrary to this, there

are periodic orbits that exist only in the restricted
three-body problem proper. In the earth-moon sys-
tem such orbits would owe their existence to the dis-

turbance produced by the moon. This report presents
periodic orbits of the second kind and orbits that are

inherent in the restricted three-body problem proper.

B. BASIC ASSUMPTIONS

A restricted three-body model is assumed

for the earth, moon, and probe system, in this sys-

tem, the earth and moon revolve in circles in a plane

around their common center of mass (barycenter).

For this investigation, the probe's motion is restric-

ted to the plane defined by the earth-moon motion.

The equations of motion are normalized such that the

sum of the masses of the earth and moon is unity; the

constant distance between the earth and moon is unity,

and the period of the earth and moon about their com-
mon center of mass is 27r. The ratio of the mass of

the earth to the mass of the moon was assumed to be

80.45, and for the purpose of converting from the un-

itized system to a physical system of units, the dis-
tance from the center of the earth to the center of the

moon was taken to be 385,000 km.

Orbits are geometrically represented in a rotat-

ing coordinate system (origin at the baryeenter) in
which the earth and moon lie on the x-axis. In this

rotating coordinate system, periodic orbits are sym-

metric with respect to the x-axis. This symmetric

property is attributed to image properties which oc-

cur in this system. Miele's [3] "Theorem of Image

Trajectories" states that if a trajectory is possible

from earth to moon, the image reflected about the x-

axis is also possible. The image trajectory will be

traversed in the opposite sense, that is, from moon

to earth. Thus, a trajectory starting perpendicular

to the earth-moon line and crossing the earth-moon

line perpendicular at some later time will return to

the original starting position. This image property

leads one toconclude that two.perpendicular crossings
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of the'eart!_-mo6nline(x'-axis)are sufficientfor per-
iodici_yin the restricted three-bodyproblem. With
this in mind, orbits werestartedonthebacksideof
themoonperpendicularto theearth-moonline. This
wasan arbitrary choiceof startingconditions,but
theyprovedquiteconvenient.Withoneperpendicular
crossingassured,the problemis to isolatetransits
which have a secondperpendicularcrossingof the
earth-moonline. In this study,thevelocitymagnitude
at thestartingposition{first perpendicularcrossing)
wasvaried in orderto performtheisolation. Com-
pletefamiliesweregeneratedbychangingthestarting
positionandrepeatingtheisolation.Theperiodofthe
orbit andclose approachdistanceto the earthvary
with thecloseapproachdistanceat themoon. These
featuresareobservedandpresentedfor severalfam-
ilies. As shownin SectionIII, somefamiliescontain
orbitswhichcollidewiththeearth.A further increase
or decrease,as thecasemaybe, in thestartingpo-
sition behindthemoonproducesorbits thatare retro-
gradeas theyapproachtheearth. Theseretrograde
orbits areneglectedfor thepresent;however,future
investigationsareplannedin this areaandshouldadd
insightto the general behavior of periodic orbits.

C. C LASSIFICATION

The classification of orbit families used in

this report is the same as the system used by Aren-
storf [4] and Davidson*. Categories such as ratio,

order, and class are used in distinguishing various
families of orbits. Sincethese terms will be used ex-

tensively, a brief explanation of each is in order.

Figures 1 and 2 depict a periodic orbit in a ro-

tating and a space-fixed frame of reference, respec-
tively. In the space-fixed system, the probe makes

FIGURE Io PERIODIC ORBIT RATIO i/2, ORDER I,
ROTATING FRAME OF REFERENCE

* Private communication with M. C. Davidson of

the Computation Laboratory of MSFC.

j_

$2 M2 bit

o l': S]

M_

FIGURE 2. PERIODIC ORBIT RATIO'I/2, ORDER

1, SPACE-FIXED FRAME OF REF-
ERENCE

two revolutions in its orbit in the same time the moon

makes approximately one revolution in its orbit. The

major axis of the probe's orbit has been rotated

slightly due to the disturbance by the moon; therefore,
the period of the orbit is less than the period of the

moon, and the orbit is not closed in the space-fixed

frame of reference. However, the forces acting on

the probe at S 4 are equal to the forces acting at S I.
Thus, closure in the space-fixed frame of reference

is not necessary for periodicity in the restricted

three-body problem. If one lets m equal the number

of revolutions the moon makes while the probe has to

make k revolutions in its orbit before periodicity oc-
1

curs, then the ratio m/k =-_ is used to classify this

orbit and the period, t _ 27rm.

Kepler's third law provides an estimate for min-

imum value of m/k for orbits that encompass both the

earth and moon. In the unitized coordinate system,

the period of the moon is given as Pm= 2_, and the

period of the probe about the earth is Pp = 27r_] a 3
where a is the sere,major axis of the probe's orbit.

-If the probe's orbit is to contain both masses, then
1

> Under this assumption, the minimum value of
I

m/k is {-,_) _ .354.
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1
Figure 1 is an orbit of ratio -_ order 1. Orbits

2 3 4
with ratio -_, _, _ .... will be referred to as higher

t

order orbits (second, third, fourth . ..) of ratio _.
nm

In general, an orbit with a ratio _- is classified as

ratio m/k order n. Figures 3 and 4 show orbits of

FIGURE 3. RATIO i/2, ORDER 2, CLASS A

FIGURE 4. RATIO i/2, ORDER 2, CLASS B

i

ratio _ order 2. In Figure 3 the second perpendicular

crossing of the earth-moon line occurs on the back

side of the moon. Orbits with this characteristic are

designated class A. The orbit shown in Figure 4 has
the second perpendicular crossing on the front side of

the moon. This perpendicular crossing occurs after

apogee, or alternatively stated, on the descending leg

of the space-fixed orbit. Orbits of this nature will be

referenced to as class B. First order orbits are per-

iodic orbits of the second kind, but the higher order
orbits are orbits of the restricted three-body problem

proper.

All orbits presented herein have at least one p_r-

pendicular crossing on the back side of the "moon.
There are orbits whichdonot possess this character-

istic, but complete data on these orbits are not avail-

able at this time.

D. APPLICATIONS

A knowledge of the conditions that exist in

earth-moon space is desirable prior to manned lunar

missions. Mapping of meteoroid concentration and

radiation belts in the region of earth-m oon space could

be provided by an instrumented probe in a long-life

periodic orbit (t year or more). Periodic orbits of-

fer repeated close approaches to both the earth and
moon and information gathered near the moon could

be easily transmitted back to earth. Certain periodic
orbits perm it adequate coverage of the space traversed

by an Apollo type trajectory; therefore, in choosing
an orbit, one should consider the amount of tim e spent

(coverage) in the desired region.

In the restricted three-body problem, the moon's

orbit is assumed to be circular, but in the true physi-

cal system, the ellipticity of the moon's orbit adds a

perturbative force which will require a velocity budget
for orbit keeping. However, one can, in limited

cases, overcome this perturbation by employing per-
iodic orbits with periods that are exact multiples of

the moon's period. If the orbit shown in Figure 2 had

a period that was a multiple of the moon's period and

M I represented the position of the moon at apogee or
perigee, then S 4 would coincide with SI, and the orbit

would be periodic even if the moon's eccentricity was

non-zero,

periodic orbits can also be used for exploration

of outer space. If one replaces the earth-moon sys:
2

tem by the sun-earth system, then an orbit of ratio -_

order i (Fig. 13) offers the advantage of a return
near earth at which time information could be relayed

to earth via low power transmission. The orbit shape

will vary slightly due to the different mass ratio of
the sun-earth system, but in general the orbit will
have the same basic features. The period of the orbit

shown in Figure 13, instead of being twice the moon's

period, would be twice the earth's period about the

sun.

III. RESULTS

Families were studied by varying the starting

position behind the moon, and the reBults are pre-
sented with this as the independent parameter. Closest
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appro}tch distance to the'center of the earth, the per-

iod of the orbit, and percent time on the inner leg of
the orbit are presented for various families. The in-

ner leg of an orbit is defined as the part of the orbit

that lies closest to the earth-moon line and extends

from perigee at the earth to perisel at the moon and

back to perigee at the earth. The second approach
distance to the moon is presented for the higher order

1
orbits. Data for orbits of ratio _ order 1 are pre-

sented in Figure 5. Orbits of this family exist for

Clos_mt Approach to Center of Earth ( 10 s kin)

6O

45

50

40 - 40

30

35

20

30

t0

25

0 0

%t on Inner Leg

:l/ z

°°lti'/
0 I0 20 30

1 T.U. of Time = 105.13 hr

f J _Closest Approach

\
\

40 50 60 70 80 90--'4_

Starting Position BehInd the M_a ( 103 k_n)

FIGURE 5. RATIO 1/2, ORDER 1

starting positions (perpendicular crossing on the back
side of the moon) ranging from the moon's surface

out toa radius of 89,400 kin. At radii slightly greater
than 89,400 kin, the orbits impact the surface of the

earth, and a further increase in the starting radius
produces retrograde orbits.

1
Figures 6 and 7 show data for ratio _ order 2

class B. These orbits exist for starting radii between

3075 km and 57,000 kin. Collision with the surface of

the earth occurs for starting radii less than 3075 km

and greater than 57,000 kin. It is evident from Fig-

ure 7 that this family contains an orbit that will be
periodic even when the moon's orbit is assumed to be

elliptic.

1
Depicted in Figures 8 and 9 are data for ratio -

2

order 2 class A. Collision with the surface of the

earth occurs with a starting radius of 1928 kin. For

this starting radius, the second perpendicular cross-
ing of the earth-moon line occurs on the back side of

the moon at a distance of 132,000 kin. As the start-

ing radius is continuously increased, the second per-
pendicular crossing moves in toward the moon until

the two crossings coincide. This occurs at about

t5,000 kin. Transits that are started beyond this
radius will have their second perpendicular crossing

Closest Approach to Center of Earth ( 103 kin)

6O

5O

4O

30

2O

Second Approach to Moon (103 krn)

3

0H
10

_ S_cond Approach

Closest Approach_ _

\
\

20 30 40 50 60

Starting Position Behind the Moon (l0 s kin)

FIGURE 6. RATIO 1/2, ORDER 2, CLASS B

t (period)

_ner Leg

i

i T.U. of Time = 105.13 hr

i2.60

d

12.55 /

12. 50 /_

12. 45 t

12. 40

t2. 3512.30

12.25

0.00

0

\

\

10 29 30 a0 5r} 60

Starting Position Behind the Moon ( 103 km)

FIGURE 7. RATIO 1/2, ORDER 2, CLASS B

between the moon and the starting position, and they
will be duplicates of transits that were started from a

position inside the 15,000 km limit.
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Second Approach to },loon (10 _ knu

Closest Approach to Center of Earth (103 kin)
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FIGURE 8. RATIO 1/2, ORDER 2, CLASS A

t (period)

% t on Inner Log

13.0

12.8

12.6

12.4

12,

12.

ll.t

11.6

11,4

11.2

0.0

0

I I I /

/4tT.U. of Time : 105,13 hr

I/
/

/
/

t

2 4 6 8

) zStarting 1 osit'on Behind the Moon (103 krn)

FIGURE 9. RATIO 1/2, ORDER 2, CLASS A

Data for orbits of ratio _ order 3 (an_exam'ple ' is

shown in Figure 10) are presented in Figures 11 and 12.

FIGURE 10. RATIO 1/2, ORDER 3
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FIGURE ii. RATIO i/2, ORDER 3
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' Collis{on with the earth o_eurs for starting radii less

than 2310 kin. As seen in Figure t0, the second per-
pendicular crossing for the family occurs behind the
earth.

2
Data for orbits of ratio _ order i are given in

Figures 13 and 14. These orbits can be found with

starting radii beginning at the moon's surface and ex-
tending out to 183,000 kin.

M

FIGURE 13. RATIO 2/3, ORDER I

_z_ ,_0 i r_.t. ,,[ lit,l,, 1_5.1:Uhr
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/
.._.__--- --

_o ino izo 14o 16,, 18,) 21,_)_

St:llling pt)sitic,n Fk,himl tht, 5h*(ul _I0 akin*

FIGURE 14. RATIO 2/3, ORDER I

Figures 15, 16, 17, and 18 show data for orbits
2

of ratio _ order 2 class B. At a starting radius of

51,000 kin, there exists an orbit with a period of 87r

(4 months). This family contains two solutions for
the same starting radius for starting radii near 1994

km and 110,000 kin; however, further investigation is
necessary to determine theexact areas in which these
solutions exist.

FIGURE 15. RATIO 2/3, ORDER 2, CLASS B

Closest Approach to Center of Earth ( 103 km)
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FIGURE 16.
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Starting Position Behind the Moon ( 103 kin)

RATIO 2/3, ORDER 2, CLASS B

2
Data for orbits of ratio _ order i are shown in

Figures 19, 20, and 21. This family of orbits exists

for starting radii between 7800 km and 19,800 kin.

Beyond these limits the orbits collide with the surface
of the earth.
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FIGURE 17. RATIO 2/3, ORDER 2, CLASS B
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FIGURE 19. RATIO 2/5, ORDER 1
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FIGURE 18. RATIO 2/3, ORDER 2, CLASS B
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FIGURE 20. RATIO 2/5, ORDER t

3

Information for orbits of ratio _ order t is given

in Figures 22, 23, and 24. Members of this fam-

ily were found for starting radii from 3187 km to

74,026 kin. Two solutions were found for each start-

ing position, and the alternate solution (the solution

with the highest velocity) is denoted by an asterisk.
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FIGURE 21. RATIO 2/5, ORDER I

EO M

FIGURE 22. RATIO 3/5, ORDER i

Data are given in Figures 25, 26 and 27. The veloc-

ity difference between two orbits starting from the

same radius at the moon varied from 6.4 m/s to 38.4

m/s°

IV. CONCLUDING REMARKS

3
I 2 2 and-zhave been

Periodic orbits of ratio 2' 3' 5' o

investigated. Higher order orbits of these ratios are

being studied as well as different ratios; these will be

described in a later paper. To aid in mission plan-

ning, Figure 28 shows a summary of some of the orbits

which offer injection altitudes of the earth of approxi-

mately i00 nautical miles.
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' RECENT DEVE LOPMENTS IN THE PREDICTION OF EARTH ORBITAL SATE LLITE LIFETIME

by

H. F. Kurtz, Jr.

and
A. R. McNair

SUMMARY

A brief review of the orbital lifetime prediction

model currently in use at MSFC is made followed by

discussion of two recent developments in lifetime

studies. The first is an extension of graphical pre-
diction charts to account for the effects of orbital in-

clination, argument of perigee, and date of launch.

The second is a method of joint optimization of orbital

lifetime and payload mass placed in orbit by a given

vehicle. It is found by the latter method that signifi-

cant increases in lifetime or payload mass may be

obtained through the selection of an _cal

orbit. _ f,,_._- -

I. INTRODUCTION

N65-2414 
da "CDA

=_-= fa (a, p, i, _, w, v, --M--

CDAdob =-_t =fp (a, p, i, a, w, v, M

where

a = apogee

p = perigee

i = inclination

_2 = right ascension of node

w = argument of perigee

, P)

--, p)

Orbital

Elements

(1)

For large vehicles of the Saturn class in low earth

orbits, it becomes quite important to analyze the ef-
fects of atmospheric drag upon the orbit both for life-

time and decay prediction in mission planning and for

post-flight orbit determination. This paper, after a

brief review of the basic prediction model currently

in use, presents a recent extension of a graphical pre-

diction method and discusses recent findings in joint

lifetime-payload mass optimization. The work de-

scribed was performed partially in-house and partially

by Lockheed Missiles and Space Company (LMSC) un-

der contract NAS8-11121, and represents a continua-

tion of studies begun in 1958 (Ref. 1) and last sum-

marized in Reference 2. No attempt is made in this

paper to present a comprehensive or detailed analysis,

but rather to summarize recent progress.

v = true anomaly

C D = drag coefficient 1

A = mass of vehicle

p = atmospheric density

Param eters

of Drag

Mean decay rates _tM and PM are obtained by in-
tegrating the equations (1) over an orbit, assuming

that the orbital elements do not change over that time

interval. Apogee and perigee are then obtained as a

function of time by integration of the equations:

dp PM

da a M

II. REVIEW OF ORBITAL LIFETIME PREDICTION
MODE L

The lifetime prediction model adopted is basically

a common one, in which the decay rates of the orbital

elements describing the altitude and shape of the orbit

_re represented by analytic derivatives:

and (2)

dt 1
-- T-'--

da a M

The exact formulation of equations (1) and (2) is

largely a matter of choice, and var_us formulations
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are successful. The technique may vary from a rela-

tively simple one, whfch has been largely used in

MSFC studies (Ref. 2), to one of more sophistication

such as that developed by LMSC for the Discoverer

program (Ref. 3). The first technique neglects var-

iation of the parameters i, _, and ¢0, and assumes a

spherical earth model. The second technique inte-

grates simple variational equations of the parameters

i, _2, and w, and uses an oblate earth. The choice of

parameters used in the formulation may also vary; for

example, semi-major axis and eccentricity may be

used instead of apogee and perigee. For many pur-

poses a simple model carefully applied yields com-

parable results to the sophisticated model.

The primary factor of uncertainty in all current

lifetime models is the atmospheric density p. Although

the drag coefficient CD and effective drag area A (for
unstabilized bodies) also contribute noticeably to the

uncertainty, their uncertainty is generally of lesser

magnitude and may be removed to some extent by

flight experience with similar vehicle configurations

("calibration" by orbit determination). Various mod-

els are used to represent p, which is itself a complex

function of many parameters. The primary variables

which are of significance in the lifetime model are

(a) altitude dependence, (b) variation with solar ac-

tivity, and (c) "diurnal bulge" variation.

The approach taken in MSFC studies has been to
represent the altitude dependence by a standard model

atmosphere (e. g., 1959 ARDC) and the diurnal bulge

by an analytic multiplicative factor (Ref. 4). The

variation with solar activity has been represented by

a second multiplicative factor based upon an extrapo-

lationof the solar activity level and an estimate of its

effect upon the atmosphere.

This "solar activity" factor attempts to account
for the mean variation due to the eleven-year solar

activity cycle only. Short-period density effects such

as the 27-day solar activity cycle are of much less

importance. A typical form for this factor is dis-
cussed and shown graphically in Section III. A modi-

fied shift function based upon experience with the first

two Saturn I orbital flights is being prepared.

For long term predictions (more than a few

months in the future) substantial uncertainty exists in

the solar activity shift factor, amounting to an uncer-

tainty (~2¢r) of +i50 percent and -60 percent in pre-
dicted lifetimes. This uncertainty magnitude is borne

out by applying the prediction method to some 50 de-

cayed satellites and comparing with actual lifetimes.

The error distribution of these predictions is shown

in Figure i.
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FIGURE 1. ERROR DISTRIBUTION OF LIFETIME

PREDICTIONS

This uncertainty can, of course, be substantially re-

duced for post-launch predictions by using the ob-
served initial orbit decay to "calibrate" the atmos-

phere (actually the atmosphere - ballistic factor

product). The uncertainty can also be significantly
reduced before launch by "calibratinff' through the use

of observed decay information from past flights or
satellites still inorbit, providing a satellite at a sim-
ilar altitude is available with sufficient tracking in-

formation.

III. IMPROVEMENTS IN GRAPHICAL MODEL

For many purposes in preliminary mission stud-

ies, the use of graphical methods to predict orbital

lifetimes provides convenience, permits quick re-

sponse, and affords sufficient accuracy to make it an
efficient method. Graphs providing normalized life-

time as a function of apogee and perigee altitudes, as

shown in Figure 2, can be found many times in the

literature. Figure 2 was generated by LMSC (Ref. 5).
To make an approximate lifetime prediction, the nor-

malized lifetime L' for a given orbit is read from the

graph; multiplying by the inverse ballistic factor

(M/CDA) yields the absolute lifetime estimate, L.

L = L' (M/CDA)

The graphical method has been extended to perm it
correction for major factors affecting the lifetime

other than apogee and perigee. The corrected lifetime

prediction takes the form

L = [M/CD A] [L'] [f(t)]If(i,¢o)].
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FIGURE 2. LIFETIME PARAMETER AS A FUNC-

TION OF ORBITAL ALTITUDE

The correction factor f(i,w), shown in Figure 3,

is a function of i, the orbital inclination, and w, the

initial argument of perigee. This factor adjusts the

predicted lifetime to account for the oblate geometri-

cal earth, which causes an effective variation in the

satellite altitude and is dependent upon the orientation

of the orbit relative to the earth equator. The f(i,w)

function was derived numerically from many cases

computed withthe LMSC sophisticated lifetime model,

which includes the change of argument of perigee due

to the oblate earth gravitation model. The curves

shown represent average values for various orbital

altitudes, eccentricities, and ballistic factors_ _or

most purposes the variation of f(i, w) can be neg-
lected.
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FIGURE 3. LIFETIME CORRECTION FACTOR AS A

FUNCTION OF INCLINATION AND AR-

GUMENT OF PERIGEE

The correction factor f(t) is shown in Figure 4.
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FIGURE 4. LIFETIME CORRECTION FACTOR AS A

FUNCTION OF DATE

This factor corrects the lifetime prediction for the

variation of atmospheric density with the eleven-year
solar activity cycle, and is based upon a semi-empir-

ical atmosphere model previously developed by LMSC

in the Discoverer program (Ref. 6). For maximum

accuracy in predicting lifetimes of longer than two

months, the mean value of f(t) over the approximate
lifetime should be used. For lifetimes of less than

two months, the value of f(t) at the initial time may
be used.
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Use of the correction factors with the normalized

lifetime curves yields accuracies of lifetime predic-

tion comparable withthat obtained by the more exact

computational model from which they were derived.

The correction factors given in Figures 3 and 4 are

referenced specifically to Figure 2 and, in general,

cannot be directly appliedto similar graphs of lifetime

versus apogee and perigee.

IV. ORBIT OPTIMIZATION

lifetime is clearly optimizdd ('Fig. _). The a'pogree/ "

perigee ratio which yields this best orbit appears to

(day) Lifetime

105

Maximum

Lifetime

10 4

In planning the orbital altitude and eccentricity

for future satellites, it is often desired to guarantee a l03

specified orbital lifetime, and also maximize the pay-
load mass in orbit or, conversely, to maximize the

lifetime for a given payload. Payload mass - lifting

capabilities of the Saturn launch vehicles are derived
using calculus of variations techniques to optimize 102

trajectory parameters for maximum payload. This

optimization defines the apogee-perigee altitudes
achievable by the launch vehicle for different orbital

payload masses ( Fig. 5).

(kin) Apn (,e Altitude
10,000

10 i
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FIGURE 5. LAUNCH VEHICLE ORBITAL CAPA-
BILITY

Orbital lifetime analysis of numerous sets of such

performance data derived for Saturn launch vehicles

has yielded a common result. Selecting a given pay-

load mass, and plotting the lifetimes predicted for the
possible maximum achievable orbits, we found that

there is a specific elliptical orbit for which the orbital

/

13,000

Circular Orbits

10-1

/
/

/

114,000
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Perigee Altitude (km)

FIGURE 6. ORBITAL LIFETIME OPTIMIZATION

be dependent upon the particular set of vehicle per-

formance data. The optimum apogee-perigee com-

bination is independent of the ballistic coefficient of

the satellite, as long as a constant configuration is

considered. In analyses thus far the apogee/perigee
ratio has varied between two andfour, increasingwith

perigee altitude.

Some Interesting results obtaIned for one case

which has been studied are presented. These results

illustrate an application which has been made of this

principle of an optimum orbit to yield maximum life-
time for specified vehicle performance. Other appli-

cations have also been made. The fifth Saturn I test

flight orbit was optimized for maximum lifetime. Ex-
tensive investigations have been made in defining the

orbit of the ninth Saturn I flight carrying a met eor old

experiment.
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In this illustrative case, the primary concern was

maximizing payload mass for a given configuration

and a specified orbital lifetime. The orbital capability
of the launch vehicle was expressed in Figure 5 as

6

maximum apogee altitude which can be achieved as a

function of perigee altitude for different payload mas-

ses. The lower envelope designates the limiting case 4
of circular orbits. The orbital lifetime obtained for

the different masses is shown in Figure 6 as a func-

tion of perigee altitude, assuming the maximum pos- 2

sible apogee associated with the perigee and payload

mass. The locus of the maximum lifetime curve is 0

shown in Figure 7 superimposed on the performance

-2
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50,0n0

-- Paykmd Mass- -- Lifct_ne

\ \

/ \ \ x

,,_ \ \/ "% \... \\_
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Peri fee Altitud, r (kin)

FIGURE 7. LOCUS OF MAXIMUM LIFETIME AND

CONTOURS OF CONSTANT LIFETIME

, data of Figure 5, with contours of constant lifetime

also indicated. The orbital lifetime varies as the pay-

load mass varies, and identical lifetimes may be ob-

tained for different payload masses with a proper se-
lection of the apogee-perigee combination.

(%) Payload Mass Gain
8

Using these data, an optimization can be per-

formed to maximize the payload mass for any desired
lifetime. This is noted by observation of the lifetime

contour curves of Figure 7 where maximum payload
values for a given lifetime occur along the locus curve

of maximum lifetime. The amount of the gain in pay-

load mass resulting from the optimization is more

clearly seen in Figure 8. The potential percentage

gain or loss in payload mass which can be achieved

by using an elliptical rather than a circular orbit to

yield a specified lifetime is shown in Figure 8 as a

-6

-8

100

_ Lifetime

O Circular Orbit Reference

!

150 200 250

Perigee Altitude (kin

FIGURE 8. PAYLOAD MASS OPTIMIZATION

function.of perigee altitude. A clear maximum is seen

in each of the constant lifetime curves. The gain re-
alized by this optimization increases in importance as

the absolute lifetime required increases.
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A. PUBLICATIONS

MTP-AERO-64- i

January 15, 1964

LONGITUDINAL PROPELLANT VIBRATIONS

By

Larry Kiefling

A BSTRACT

A direct iteration procedure is given for calcu-

lating the natural frequency of longitudinal vibration

of propellant in a cylindrical tank with elastic walls.

Tank walls are assumed to deform under pure hoop

stress. Propellant is considered incompressible. The

mass of the tank walls and elasticity of a hemispheri-

cal end are included. Frequency data for a simple

case and the outer tanks of Saturn I, Block II vehicles
are given. These vibrations are inthe same frequency

range as some lower bending modes for the earlier

flight times.

MTP-AERO-64-2

January 15, 1964

HEAT AND MASS TRANSFER IN BINARY INERT GAS

FLOW FOR DISTRIBUTIONS OF TEMPERATURE

AND CONCENTRATION RENDERING THE

PROPERTIES NEARLY CONSTANT

of the boundary layer. A correlation formula of rig-

orous numerical solutions for qw/qwo has been de-
rived in Reference t4 for the constant pressure case.

Here, qw is the heat transfer in the presence of mass
transfer, whose absence is denoted by subscript o.
This correlation formula is linear in the mass trans-

fer rate PwVw, and, therefore, fails for large values
of PwVw .

A simple engineering solution method of the sim-

ilarity equations is proposed here, which gives those

points of the qw/qwo versus PwVw relationship for
which five property parameters are nearly constant

across the boundary layer. If these five conditions

are satisfied, the differential equations in similarity

variables can be uncoupled. By use of an auxiliary

graph, the momentum equation can be integrated di-

rectly as an initial value problem. This solution is

used to determine qw by quadratures. Correlation

formulas for qw are presented for both the constant
pressure and the stagnation point cases.

The five conditions on the mixture properties can

be satisfied in an approximate way for the injection of

H20 , He, or H 2 into air, provided dissipation effects

are sufficiently small. Comparison to the correlation

formula of Reference 14 shows very good agreement
if the Mach number Moo = 0, and some difference for

Moo = 3. The results for H20-air mixtures cover the

range of qw/qwo values from unity to values as low as
0.5. Only very small injection rates are compatible

with the five conditions if H e or H2 is injected into
air. The theory is worked out in this paper for the

case of constant pressure and air as the primary flow-

ing medium.

By

Ernst W. Adams, John D. Warmbrod, C. Lee Fox,
and Robert M. Huffaker

TECHNICAL MEMORANDUM X-53008

February i8, 1964

ABSTRACT

Injection of a foreign gas into the laminar air

boundary layer is considered. The mixture properties

are arbitrary functions of temperature T and foreign

gas concentration w. Unless the properties are con-

stant, similarity transformations are valid only at the

stagnation point or for a wall at constant pressure.

Solutions of the three similarity equations are quite
cumbersome because triple iterations are involved at

the wall to satisfy three conditions at the outer edge

THEORETICAL AND EXPERIMENTAL INVESTIGA-

TION OF BOUNDARY LAYER CONTROL IN LOW-

DENSITY NOZZLES BY WALL SUCTION AND

COOLING

By

M. R. Bottorff and K. W. Rogers*

ABSTRACT

,'.,Engineering Center, University of Southern Calif.

f
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P'rese_nted in this report are the results of a the-

oretidal and experimental investigation of the reduc-

tion of boundary layer thickness in low-density nozzles
by wall cooling, wall suction, and a combination of

these two. Potentially there is a twofold benefit in

reducing the thickness of the nozzle boundary layer:

(1) a possible increase in diffuser effectiveness, and

(2) a possible reduction in the amount of boundary
layer flow for a specified usable test section size, or
an increase in the size of the usable test section for a

given nozzle mass flow. The theoretical development

starts withtheproper integral relationship for a com-

pressible laminar boundary layer. The normal veloc-
ity at the wall is allowed to be finite to include the ef-

fects of wall suction. Definitions of momentum and

displac em ent thicknesses which account for transverse

curvature are used. The results of Iglisch, who de-

veloped an exact solution for incompressible flat plate
flow with suction, are used to estimate skin friction

coefficients. The Prandtl number is assumed to be

unity, and two-dimensional values of 6*/0 are used.

An exponential velocity profile which takes wall suc-

tion into account was used to estimate boundary layer
height.

The theoretical results were checked by an ex-

periment in which a Mach number 9 - to - 11 porous

nozzle was operated at unit Reynolds numbers in the

range of i00/inch to600/inch. Pitotpressure surveys
were used to determine the exit Mach number and

boundary layer thickness. Theoretical Mach number

predictions are shown to agree with the experimental

results to within 5 percent, and boundary layer height
predictions to within l0 percent.

Theoretical results are presented which show the

effects of suction and wall cooling at several Reynolds
numbers onnozzle diameter and uniform core size for

a given throat area and Mach number distribution. It

is concluded that the use of suction and cooling may

result in a larger test section size, but that the mer-

its of a cooled porous wall in any specific case must

be decided from an analysis of the complete wind tun-
nel system.

ABSTRACT

Directional Wind Component Frequency Envelopes
for Cape Kennedy, Florida, based on the "windiest

monthly period" concept, are presented in this report

for use in structural and control studies in the design
of aerospace vehicles.

TECHNICAL MEMORANDUM X-530t3

February i8, 1964

TEMPERATURE MEASUREMENT INSIDE A

RA WINSONDE BALLOON

By

George T. Norwood, Jr.

ABSTRACT

Provided in this report is information concerning
a comparison of temperature inside a Rawinsonde bal-

loon and the ambient temperature. This study may be

of use to persons working with radiosonde and asso-
ciated equipment.

TECHNICAL MEMORANDUM X-53017

March 3, 1964

STABILITY ANALYSIS OF SATURN SA-5 WITH LIVE
S-IV STAGE

By

Philip J. Hays and Phil Sumrall

ABSTRACT

TECHNICAL MEMORANDUM X-53009

February 21, 1964

DIRECTIONAL WIND COMPONENT FREQUENCY

ENVELOPES, CAPE KENNEDY, FLORIDA, AT-
LANTIC MISSILE RANGE

By

Orvel E. Smith and Glenn E. Daniels

A control feedback stability analysis of Saturn

SA-5 during powered flight was performed for the S-I

and S-IV stages. Sloshing stability was investigated

by considering two propellant damping (_s) values for
booster flight: (1) _s = i/2 percent of critical damp-
ing (corresponding to wall friction), and (2) the pre-

dicted flight damping (due to the z-rings and the ac-

cordian baffles). The predicted flight damping values
were used for the S-IV flight. The sloshing instability

in the 70-inch LOX tank is caused by roll coupling,

but proper tank baffling eliminates the problem;
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therefore, no instability will occur duringbooster
flight until 133secondswhenthefluid leavesthelast
baffle. Noinstability is experiencedin pitchbecause
of thelarge massin theS-IVLOXtank,whichcoun-
teracts the sloshmassesin the S-I stage. A slight
instability in the LH2tankexistsat ignition for the
S-IVflight.

Bendingmodestabilitywasachievedbytwometh-
odsfor boosterflight: phasestabilizationandattenu-
ation stabilization. Gainstabilizationwasemployed
for all elasticmodesin theroll anda-channels.The
_-channelphasestabilizedthe first lateral bending
modeandgainstabilizedthehighermodes.Theelas-
tic modesin the _-channelwere attenuatedfor the
S-IV flight. Stability wasachievedfor boosterand
andS-IVflights.

TECHNICALMEMORANDUMX-53018

March5, 1964

SPACERADIATIONS:A COMPILATIONAND
DISCUSSION

By

W. T. Roberts

ABSTRACT

The natural radiations encountered during a space
mission will fall into one of five categories. There

will be Van Allen belts, galactic cosmic radiations,

solar winds, solar flares, and photon radiations. Each

type of radiation is examined from the point of view

of the Apollo program and the associated lunar logis-
tics vehicle, but with some comments pointing to ex-

tended missions in space, todetermine the importance

which should be assigned to each class.

TECHNICAL MEMORANDUM X-53020

March 6, 1964

SATURN V UPRATING STUDY

By

Ronald Scott, Terrell Deaton,

Ronald Toelle, and Neva Huffaker

ABSTRACT

Presented in this report is the pe_form_nce'calSa-

bility of several uprated Saturn V vehicle conf_gnra-
tions.

The configurations selected for this study repre-

sent a wide spectrum of payloads and are reflected in
moderate vehicle uprating to rather advanced vehicle

concepts.

The presentation of the relative performance be-

tween the configurations should be a valuable aid in

determining the proper steps to be taken to uprate the

performance capability of the basic Saturn V vehicle.

Report classified (C).

TECHNICAL MEMORANDUM X-53021

March 9, 1964

DIRECTIONAL WIND COMPONENT FREQUENCY

ENVELOPES, SANTA MONICA, CALIFORNIA,
PACIFIC MISSILE RANGE

By

Orvel E. Smith and Glenn E. Daniels

ABSTRACT

Directional Wind Component Frequency Envelopes

for Santa Monica, California, based on the "windiest

monthly period" concept, are presented in this report
for use in structural and control studies in the design

of aerospace vehicles.

TECHNICAL MEMORANDUM X-53023

MarCh i3, 1964

TERRESTRIAL ENVIRONMENT (CLIMATIC) CRI-
TERIA GUIDELINES FOR USE IN SPACE VEHICLE

DEVELOPMENT, 1964 REVISION

By

Glenn E. Daniels

A BSTRAC T

Provided inthis document are guidelines on prob-

able climatic extremes and probabilities-of-occurrence
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of terr_strk41 environmental data specifically for space

vehicle and associated equipment development. The

geographic areas encompassed are the Atlantic Mis-

sile Range (Cape Kennedy, Florida) ; Huntsville, Ala-
bama; New Orleans, i_ouisiana; the Pacific Missile

Range (Point Mugu, California) ; Sacramento, Cali-

fornia; Wallops Test Range ( Wallops Island, Virginia) ;

White Sands Missile Range, New Mexico; and inter-

mediate transportation areas. Therefore, this docu-
ment omits climatic extremes for world-wide opera-

tions. This is consistent with the existing philosophy

regarding the employment of large space vehicles,

since launching and test areas are relatively restrict-
ed due to the availability of facilities and real estate.

This document presents the latest available in-

formation on probable climatic extremes, and super-

sedes previous information presented in MTP-AERO-

63-8 (Ref. i). Where differences exist between this

document and MTP-AERO-63-8, the data presented

herein shall be employed. The information in this

document is recommended for employment in the de-

velopment of space vehicles and associated equipment,

unless otherwise stated in contract work specifica-
tions.

TECHNICAL ME MORANDUM'X-53024

March 17, 1964

PROGRESS REPORT NO. 5

SPACE FLIGHT AND GUIDANCE THEORY

By

William E. Miner

ABSTRACT

This paper contains progress reports of NASA-

sponsored studies in the areas of space flight and

guidance theory. The studies are carried on by sev-

eral universities and industrial companies. This prog-

ress report covers the period from July t8, i963, to

December i8, 1963. The technical supervisor of the

contracts is W_ E. Miner, Deputy Chief of the Astro-
dynamics and Guidance Theory Division, Aero-Astro-

dynamics Laboratory, George C. Marshall Space
Flight Center.

BOOSTER "PARAMETRIC DESIGN METHOD FOR

PERFORMANCE AND TRAJECTORY ANALYSIS

PART I: CONFIGURATION

By

V. Verderaim e

ABSTRACT

A method is presented for mathematically de-
scribing the geometric configuration of a conventional

liquid chemical booster stage for a vertically launched

space vehicle. Geometric properties of all significant

components were derived in parametric form. Re-
sults were summarized in schematic dimensional dia-

grams for two arrangements of tanked bipropellant
fluids. These results will serve as a basis for formu-

lating mass parametric equations as required for per-

formance and trajectory analysis.

TECHNICAL MEMORANDUM X-53027

April t0, i964

CAPE KENNEDY LOW LEVE L WIND STUDY FOR

SEPTEMBER 23- 25, i963

By

Carroll Hasseltine

ABSTRACT

Compared in" this report are the high winds re-

corded at Cape Kennedy, September 23 - 25, i963,

with the previously computed 95, 99, and 99.9 per-

centile wind speeds used for design criteria at Cape

Kennedy and vicinity. Methods used in computing the

wind speeds at Cape Kennedy are explained. Data are

presented for the length of time that these percentile

wind values were exceeded. A comparison of the con-
stants describing the wind speed profiles for different

wind speeds and a comparison of gust factors are also

presented. Some of the computed constants which best

describe the characteristics of high surface winds are
shown to differ from the constants which best describe

the entire spectrum of wind speeds.

TECHNICAL MEMORANDUM X-53026

March 18, i964

TECCHNICAL MEMORANDUM X-53029

April '6,i964
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DYNAMICTESTRESULTSOFSAD-6

By

Gale R. Ernsberger

ABSTRACT

The purpose of these vibration tests is to deter-

mine the body bending and torsional dynamic behavior

of a full scale prototype of the Saturn SA-6 flight ve-

hicle. A full scale prototype was vertically suspended
in the test tower and excited by shakers mounted at

the engine gimbal planes. The vehicle's dynamic re-

sponse at various applied forcing frequencies was re-

corded by vibration pickups. Since the Saturn is sta-
bilized and controlled by a servo loop, response

measurements are neededto properly design the con-

trol system filter circuits, thus preventing vehicle

dynamic instability. The SAD-6 vehicle was tested

for both the boost flight with the S-I booster stage and

for the S-IVpowered flight withthe S-I stage removed.

TECHNICAL MEMORANDUM X-53031

April 6, i964

SA-6 PREDICTED STANDARD TRAJECTORY AND

DISPERSION ANA LYSIS

By

J. L. Crafts

A BSTRAC T

Presented in this report is the standard trajectory
for Saturn I vehicle SA-6 to be flown over the Atlantic

Missile Range. Dispersion results from 2-(_ pertur-

bations and impact dispersion of the recoverable cam-

era capsules and launch escape system are also pre-

sented. The trajectory shaping and a brief vehicle

configuration description are provided. A nominal

trajectory will insert the S-IV stage and payload into
a ncar-circular orbit with a perigee and apogee of

183.1 km and 229.4 km, respectively. This orbit has

a nominal lifetime of 4. 8 days. This trajectory is

based on mass and propulsion data provided by P&VE

Laboratory. SA-6 will be the first Block H vehicle to
be flown with closed loop guidance during the burn of

the S-IV stage. This trajectory assumes the Fischer

Ellipsoid of t960 as the reference ellipsoid.

Report classified (C).

TECHNICAL MEMORANDUM X-53035

April 22, i964

ON SOUND INTENSITY AND SOUND PRESSURE
LEVELS

By

Willi H. Heybey

ABSTRACT

Sound propagation through the open atmosphere is

studied at MSFC mainly for an estimate of the acous-

tical energy that sound rays sent up by static firings

and refracted back to ground level may transmit to

inhabited areas. A theoretical expression derived in
an earlier report (Ref. 1) for the volume density of

returned energy is converted into an expression for

the corresponding intensity level to accommodate it to

engineering practice. A first approximation of the
latter's relationship to the sound pressure level (as

an observable quantity) is established. The results
of the theory can thus be compared to those of field

measurements by microphones, and a basis for theo-
retical prediction is prepared.

TECHNICAL MEMORANDUM X-53036

April 22, i964

CONTROL THEORY HANDBOOK

By

Doyle Garner

ABSTRACT

This report is writtento present under one cover,

employing a unified coordinate system and notation,

the equations of motion and the basic control theory

applicable to stability analyses for a flexible launch

vehicle.

Five of the basic control problems are discussed

to provide some background and insight in the control

of large flexible boosters moving through the earth's

atmosphere.

The control system coordinate and notations are

shown and the rigid body equations are derived for

both the pitch and yaw planes. A conventional control
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systemis _ntroducedcohtaininga positiongyro, rate
gyro, accelerometerandangleof attackmeter. The
gainsof the control mechanismandthe vehiclepa-
rametersare relatedto thefrequencyanddampingof
therigid body. Boththe"Drift Minimum"and"Load
Minimum"controlprinciplesaredeveloped.

Thebendingandslosh equationsarederivedby
writing the energyexpressionsandsubsequentlyap-
plyingLagrange'sequation.Themethodof computing
bendingmodesandfrequenciesfor aflexiblebodyis
shownfor botha simplified continuousmassmodel
anda lumpedmassmodel.

The constructionof a syntheticwindprofile for
controlsystemstudiesusingthe95percentor 99per-
centprobability of occurrencewindspeedprofileand
the 99percentprobabilityof occurrencewindshear
envelopeis discussedandillustrated. Themethodfor
superimposinga gustonthesyntheticwindprofile is
also shown.

Blockdiagramsandthe Laplacetransformare
introducedto relate the systemequationsin aform
which can be studiedin terms of generalfeedback
theory.

Several stability analysis techniquesare dis-
cussed, includingRouth's stability criterion, Hur-
witz's stability criterion, root locus, frequencyre-
sponsemethods, and Nyquist'scriterion. These
techniquesare appliedto a vehiclecontainingone
bendingmode,acontrol filter andanactuator. The
correspondingroot locusplot, Bodeplot,Nyquistplot
andNicholsplotaredrawn.

Thebasicelementsof anexampleadaptivecontrol
systemarediscussedandits correspondingblockdia-
gramis shown.

The appendicescontainthe block diagramand
transfer functionsfor severalsensorsandengineac-
tuator. A summaryof theflexiblebodyequationsin-
cludesthe effectsof engineinertia, bendingmotion
and slosh motionanda derivationof thebendingmo-
mentatanystationalongthevehiclelongitudinalaxis.

TECHNICALMEMORANDUMX-53037

April 22, 1964

INTERPARAME TER STATISTICA L ANA LYSIS OF

SURFACE WIND SPEED, TOTAL OPAQUE CLOUD
COVER, AND MAXIMUM WIND SPEED ALOFT AT

CAPE KENNEDY, FLORIDA

By

Orvel E. Smith, George C. Marshall Space Flight
Center; Lawrence E. Truppi and Harold L. Crutcher,

U. S. Weather Bureau, National Weather Records

Center, Asheville, North Carolina

A BSTRA C T

Provided in this report is a monthly analysis of
the statistical relationships of surface wind, winds

aloft and total opaque cloud cover at Cape Kennedy.

These data are based on five years of record, Janu-

ary 1957 through December t96t, and represent sur-

face observations of wind speed and total opaque cloud
cover coincident with RAWIN observations of maximum

wind speeds in the i0 to 15 kin-layer. Data are pre-

sented as percentage occurrence of "go" to "no go"
conditions where a favorable combination of all three

parameters as tovehicle launch criteria represents a
"go" condition, and a combination with one or more

parameters unfavorable to vehicle launch is classified

as a "no go" condition. The vehicle launch criteria

have been arbitrarily chosen for the purpose of this
report.

TECHNICAL MEMORANDUM X-53038

April 27, 1964

HYPERSONIC STATIC LONGITUDINAL STABILITY

AND AXIAL FORCE CHARACTERISTICS OF THREE

SATURN IB UPPER-STAGE MODELS

By

David R. Carlson

ABSTRACT

Results of hypersonic wind tunnel tcsts are re-

ported and analyzed for three Saturn IB second-stage

configurations which differ in length and frustum half-
angle. The tests were performed in the Arnold En-

gineering Development Center von Karman Facility
(VKF) Tunnel E-2, and spanned a nominal Mach num-

ber range of 5 to 8.

Three _urposes direetedthe test program: (1) the

establishment of static aerodynamic characteristics

of the second stage; (2) the separation of effects of
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strakes, Launch Escape System, change in frustum

angle, and mission abort; (3) the qualitative determi-
nation of the flow fields about these multiple-cone-

frustum-cylinder shapes for application to future ve-

hicles. The tests extend earlier supersonic results

for the same models to the hypersonic, low-density

flow regime.

The amount of flow separation and its location

control the aerodynamic characteristics. Large

changes in axial force and stability coefficients occur

near Mach 5, at which point separated flow from the

Launch Escape System completely engulfs the Com-

mand Module. High Reynolds number, concomitant

with the use of spherical trips, reduces the volume of

separated flow and produces large differences in sta-

bility and axial force coefficients compared with the

low Reynolds number (near full-scale trajectory) re-
sults.

Strakes on the Command Module have no signifi-

cant effect. Jettison of the Launch Escape System,

or abort of the Command or Service Module, intro-

duces strong, rather sudden changes in the coeffi-

cients. Newtonian impact theory correlates well with

the data for tower-off models, where attached-flow

concepts are applicable. The degree of simulation of
flow fields and vehicle characteristics is argued. It

is concluded that the data apply very well at low angles

of attack and approximately at intermediate and high

angles of attack.

TECHNICAL MEMORANDUM X-53040

April 30, 1964

ATMOSPHERIC ENVIRONMENT FOR SATURN

(SA-5) FLIGHT TEST

By

J. W. Smith

TECHNICAL MEMORANDUM X-5_04i '

May i, 1964

RIG, ID BODY STUDY OF CONTROL, SEPARATION,
AND LIFT-OFF FOR SA-6 VEHICLE

By

E. L. Sullivan, D. O. McNiel, and W. H. Harmon

ABSTRACT

Presented in this report is a rigid body analysis

of the dynamics of the control, separation, and lift-

off motion of the SA-6 vehicle for the predicted stand-

ard trajectory.

A headwind restriction of 27 meters per second

is imposed on the vehicle flight in order not to exceed
the 5.5 degree angle-of-attack limitation due to struc-

tural considerations. The wind restriction is a head-

wind due to the programmed 4 degree angle-of-attack

in the maximum dynamic pressure region. With this

wind restriction, the launch probability is still ap-

proximately in the 3a confidence level for the four

months May through August.

Under the disturbances considered in this study,

there is no collision or control problem during sepa-

ration of the S-I/S-IV stages for the predicted SA-6

flight.

The "close" launch support equipment is not an

obstacle to the lift-off of the SA-6 vehicle under the

disturbances considered. A collision problem with

the umbilical tower does exist if control engine no. i

should fail very early in flight; however, this occur-

rence must be considered highly improbable.

Report classified (C).

ABSTRACT

An evaluation of atmospheric conditions during

the flight test of Saturn (SA-5) on January 29, 1964,
is presented. The general synoptic situation for the

flight area is discussed, surface observations are

presented, and upper air data, measured near launch

time by rawinsonde and rocketsonde observation, are

given. Wind and thermodynamic data are presented

graphically and compared to the Patrick Air Force

Base reference atmosphere. Atmospheric effects on

the performance of Saturn (SA-5) are listed.

TECHNICAL MEMORANDUM X-53042

May I, i964

A TECHNIQUE FOR INCLUDING THE EFFECTS OF
VEHICLE PARAMETER VARIATIONS IN WIND

RESPONSE STUDIES

By

J. A. Lovingood

ABSTRACT
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A meth_xt is preser_ted for performing vehicle

wind l_esponse studies including the effects of varia-

tions in vehicle data such as aerodynamic and mass
characteristics. These variations are combined in

such a manner as to yield a 99.87 percent probability

value for the maximum bending moment experienced

by the vehicle when flying through a deterministic wind
profile. A step-by-step procedure is presented for

calculating the moment and other flight dynamics pa-

rameters.

TECHNICAL MEMORANDUM X-53048

May 20, 1964

MATHE MATICA L WIND PROFILES 1

PART I

By

Arnold Court, Robert R. Read, 2 and
Gerald E. Abrahms

Office of the Chief Scientist

Lockheed-California Co.

Burbank, California

ABSTRACT

Augmented Fourier polynomials, in which con-
stant and linear terms have been added to a complex

Fourier series, appear to offer a means for repre-

senting the vertical profile of the horizontal wind ve-

locity. Reasons for selecting this function, and

methods of its computation and application, are given.

Polynomial coefficients are presented for mean

monthly winds over Cape Kennedy, Florida, and for

four consecutive soundings over Montgomery, Ala-
bama.

TECHNICAL MEMORANDUM X-5305i

May 27, 1964

IPrepared under Contract NAS-8-5380 with Aero-

Astrodynamics Laboratory, George C. Marshall

Space Flight Center, NASA, with O. E. Smith as
Technical Supervisor.

:Associate Professor of Mathematics, U. S. Navy

Postgraduate School, Monterey, and Consultant to

the Lockheed-California Company.

SATURN SA-5 POST-FLIGHT TRAJECTORY

By

Gerald R. Riddle and Michael Naumcheff

ABSTRACT

Presented in this report is the post-flight trajec-
tory for the Saturn SA-5 test flight. Trajectory de-

pendent parameters are given in earth-fixed, space-

fixed, and geographic coordinate systems. A complete
time history of the powered flight trajectory is pre-

sented at 1.0 sec intervals from first motion through
insertion. Tables of insertion conditions and various

orbital parameters are included in a discussion of the

orbital portion of flight. A comparison between nom-

inal and actual trajectory dependent parameters is

also presented.

Report classified (C).

TECHNICAL MEMORANDUM X-53053

June 2, 1964

BOOSTER PARAMETRIC DESIGN METHOD FOR

PERFORMANCE AND TRAJECTORY ANALYSIS

PART II. PROPULSION

By

V. Verderaime

ABSTRACT

Approximate equations for large, liquid chemical,

rocket engine mass and space envelope are presented

in parametric form. Well known propulsion perform-

ance equations are given with modifications to admit
programming of mixture ratio shifts and throttling of

propellant mass flow rate. Parameters used in mass
and space envelope equations were nominal input de-

sign parameters in common with the propulsion per-

formance equations such that their interdependence

could be manifested in a vehicle trajectory and per-

formance optimization study. Thoughresults are based

on current type engines, it is expected that coeffic-

ients and exponents used may be readily modified to

define mass and size of moderately advanced rocket

engines.
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TECHNICALMEMORANDUMX-53054

June2, t964

STABILITYANALYSISOFSATURNSA-6WITH
RATEGYROFORS-IVCONTROLDAMPING

By

Philip J. Hays

A BSTRA C T

A control feedback stability analysis was per-
formed on Saturn SA-6 during S-I and S-IV stage pow-

ered flight. Predicted flight damping values were

used in the sloshing stability analysis for both stages

of flight. Stability was achieved for both stages of

flight although marginal stability was observed in the

S-IV LOX tank during booster flight. The marginal

stability is due to the interaction between the sloshing
and the vehicle structure.

Theoretical and experimental bending frequencies

were compared during booster flight using the experi-

mentally obtained structural damping. Theoretical

bending data were used for the S-IV flight with one

percent structural damping assumed.

Bending mode stability was achieved by two meth-
ods: phase stabilization and gain stabilization. Gain

stabilization was employed for all elastic modes in the

roll and (_-channels. The (p-channel phase stabilized

the first lateral bending mode and gain stabilized the

higher modes. The elastic modes in the (p-channel

were gain stabilized for the S-IV flight.

TECHNICAL MEMORANDUM X-53055

June 3_ 1964

STUDY OF MANNED INTERPLANETARY FLY-BY

MISSIONS TO MARS AND VE NUS

By

Rodney Wood, Bobby Noblitt, Archie C. Young,
and Horst F. Thomae

A BSTRA C T

This report contains the results of an "in depth"

mission analysis study of manned interplanetary

fly-by missions to Mars and Venus during the t970's

using Apollo technology and hardware wherever pos-

sible. The usual conic and impulsive velocity tech-
niques were used in this study; however, a precision

integrated fly-by trajectory to Mars during the t975

opposition is included.

TECHNICAL MEMORANDUM X-53056

June 4, 1964

THE AERODYNAMIC CHARACTERISTICS OF

SATURN I/APOLLO VEHICLES (SA-6 AND SA-7)

By

Billy W. Nunley

ABSTRACT

Presented in this report are the final aerodynamic

characteristics of the Saturn/Apollo vehicles. These
data are based on wind tunnel tests of scale models.

Normal force coefficient gradient, normal force co-

efficient, center of pressure, total power-on and

power-off drag coefficient, power-on and power-off

base drag coefficient, and forebody drag coefficient
are presented for the Mach number range from 0 to
10. Local normal force coefficient distributions are

presented for various Mach numbers ranging from
0.20 to 4. 96. These data are for zero angle of attack

with the exception of the gradients, which are slopes

at zero angle of attack, and the normal force coeffic-
ients, which are a function of angle of attack.

TECHNICAL MEMORANDUM X-53059

June 8, t964

SPACE VEHICLE GUIDANCE - A BOUNDARY VALUE

FORMULATION

By

Robert W. Hunt and Robert Silber

A BSTRAC T

A mathematical formulation of the problem of

guiding one stage of a Space vehicle is given as a

boundary value problem in differential equations. One
approach to the solution of this problem is to generate
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the Ta:_lor'} se_es 'expansion (in several variables)

about aknown solution. The theoretical nature of such

solutions is discussed, and a method for numerically

computing them is presented. This method entails the

numerical integration of an associated system of dif-

ferential equations, and can be used to obtain the so-

lution to any desired degree of accuracy for points in

a region to be defined. An extension of the method to

the problem of guiding several stages of a space ve-

hicle is also given, employing fundamental composite

function theory.

TECHNICAL MEMORANDUM X-53062

June i0, 1964

AN AUTOMATED MODEL FOR PREDICTING AERO-

SPACE DENSITY BETWEEN 200 AND 60,000 KIL-

OMETERS ABOVE THE SURFACE OF THE EARTH

By

Robert E. Smith

ABSTRACT

Described in this report is the derivation of a

computer routine for predicting the vertical distribu-

tion of aerospace density in the terrestrial space en-

vironment above the surface of the earth. Solar ac-

tivity, geomagnetic storm, diurnal heating, latitude,

and the earth's orbital eccentricity effects are in-

cluded in this model. Densities can be predicted for

any time through December i992.

TECHNICAL MEMORANDUM X-53064

June i6, 1964

LATEST WIND ESTIMATES FROM80 KM TO 200 KM

ALTITUDE REGION AT MID-LATITUDE

By

W. T. Roberts

ABSTRACT

The data from a total of forty rocket launches

fired specifically to determine wind characteristics

by the release of chemiluminescent trails have been

compiled and studied in an attempt to clarify seasonal

and diurnal trends in upper atmospheric winds above

80 kilometers. From a series of graphs taken at i0-

kilometer intervals, a general picture of the change

in wind vectors with height is determined.

Below i20kilometers there appears to be extreme

variation in speed and direction with very little cor-

relation with season ortime of day discernible. Above

120 kilometers, however, the winds appear to orient

more with season, and above i50 kilometers, some

diurnal variations become apparent.

More experiments of this type, particularly in the

summer and winter months, are needed to establish

confidence in the seasonal and diurnal trends.

TECHNICAL MEMORANDUM X-53071

June 24, i964

SA-7 PRELIMINARY PREDICTED STANDARD

TRAJECTORY

By

Jerry D. Weiler

ABSTRACT

Presented in this report is the preliminary pre-

dicted standard trajectory for Saturn I vehicle SA-7 to

be flown over the Atlantic Missile Range. The nomi-

nal impact area of the S-I booster, the recoverable

camera capsules, and launch escape system are also

presented.

A brief discussion of the trajectory shaping and a

description of the vehicle configuration are presented.

The nominal trajectory will insert the S-IV stage

and payload into a near-circular orbit with a perigee

and apogee of i85 km and 217 km altitude, respec-

tively. The nominal lifetime of the orbit is 3. 0 days.

The final predicted standard trajectory and dis-

persion analysis will be published approximately 30

days prior to launch date.

Report classified (C).

TECHNICAL MEMORANDUM X-53072
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June 24, 1964

MULTIPLE BEAM VIBRATION ANALYSIS OF

SATURN I AND IB VEHICLES

By

Larry Kiefling

A BSTRACT

The Saturn is idealized as a system of connected

beams and the equations of motion are derived by the

use of Lagrange's equation. A method of calculating
three-dimensional deflections from the two-dimen-

sional solution is presented. A comparison is made
between theoretical results and ten modes from the

dynamic test at SA-D6 vehicle at 68 seconds flight
condition.

The multiple beam bending vibration program has

been developed for analysis of Saturn I and Saturn IB
vehicles. The vehicle is represented by a system of

nine connected beams, one beam consisting of the ve-

hicle upper stages and the center tank of the booster

and each of the other beams consisting of an outer tank

of the booster. A vibration analysis is made on each

of these beams using a modified Stodola method. The

differential equations of motion for the system are

then derived by using Lagrange's equation.

Changes have been made to decrease the matrix

size while increasing the accuracy of the results. This

has been done by the following four measures:

i. Attachment of outer tanks to center tank by

rigid links. This permits the use of center tank co-
ordinates in describing outer tank motion, and elimi-

nates eight equations.

2. Additionof a fourth bending mode for the cen-
ter tank.

3. Additionof a second bending mode for each of

the outer tanks.

4. Addition of two degrees of freedom for longi-
tudinal propellant vibration in outer tanks.

TE CHNICA L ME MORANDUM X- 53i 18

August 28, 1964

DISTRIBUTION OF SURFACE METEOROLOGICAL

DATA FOR CAPE KENNEDY, FLORIDA

By" "

J. W. Smith

A BSTRAC T

Thermodynamic surface data for Cape Kennedy,

Florida, have been analyzed, and are presented

graphically in this study. The medians and extremes,

plus the cumulative percentage frequency levels of

0.135, 2.28, 15.9, 84.1, 97.72, and 99.865 percent,
are shown for temperature, pressure, density, vapor

pressure, mixing ratio, enthalpy, refractivity, and
relative humidity. These data are presented for hour-

ly, monthly and annual periods, and are discussed

briefly.

B. PRESENTATIONS

ON LINEARIZED SUB- AND SUPERSONIC FLOW

AROUND PULSATING AND OSCILLATING BODIES

By

Maximilian F. Platzer

The problem of steady linearized sub-and super-

sonic flow around low aspect ratio bodies at zero and

small angles of attack has been treated by M, Munk,
H. S. Tsien, R. T. Jones, G. N. Ward, M. C. Ad-

ams, W. R. Sears, F. Keune, K. Oswatitsch, M. A.

Heaslet, and H. Lomax. It is shown that in a first

approximation the flow over bodies at small angles of

attack can be replaced by the two dimensional cross-

flow only (Munk-Jones slender body theory); whereas,
for the flow around bodies at zero angle of attack, a

spatial influence has to be added. K. Oswatitsch was
able to show that the spatial influences of low aspect

ratio wings and bodies of revolution are the same for

bodies with equal cross-sectional area (Oswatitsch's

equivalence rule).

The extension of these results to not so smndcr

bodies has been obtained by M. C. Adams-W. R.

Sears, and F. Keune using two basically different

methods. Mo C. Adams-W. R. Sears apply Laplace or

Fourier transform s to the linearized potential equation

with respect to x. Expansion and inversion of the ap-

propriate solution give the higher order flow terms.

This procedure is purely mathematical. F. Keune,

on the other hand, develops an elementary and phys-

ically more appealing approach to the problem by us-

ing the local source-strength, the sum of the sources
over the cross section, and the higher order moments

of these quantities.
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Thep_esen_" ' _ "investigationis basedupontheun-
steadylinearizedpotentialequation. Thetime de-
pendenceis assumedto bepurelyharmonic.Theob-
jective of this paper is the extension of Oswatitsch's

and Keune's results to the flow around pulsating and

oscillating bodies. It is shownthatthe sub- and super-
sonic flow around low aspect ratio wings, whose skin

executes symmetric pulsations, is in a first approxi-

mation given again by two terms; namely, a cross-
flow and a spatial influence. This' spatial influence

reduces the flow around pulsating wings to the flow

around the equivalent pulsating body of revolution.

Thus, a surprisingly simple approximation theory
for pulsating low aspect ratio bodies has been found

which may have some importance for panel flutter

problems, The range of validity of this theory can be
extended by considering also the higher order terms.

These terms can again be obtained by generalizing

either the Adams-Sears method, or the Keune method

to pulsating flow. Both methods give the same re-

sults. The interpretation after Keune is advantageous,

however, showing that the higher Order terms also

consist of a generalized cross-flow and a generalized
spatial influence.

The insight gained for the pulsating body can be

extended in an elementary way to th_ case of the os-
cillating body. Here, the first order approximation

is given by the cross flow only (Garrick-Miles solu-

tion); but in the second order approximation, a spatial
influence has to be added and an equivalence rule can

be postulated also for this case,

Finally, these approximation theories are applied

to cases where exact solutions of the linearized po-

tential equation can be found. This is possibleforthe

infinitely long tube and ribbon exhibiting a harmonic

standing pulsation or oscillation. These solutions give

insight not only into the range of validity of the ap-
proximate theories developed in this paper, but show

also the transition to piston theory.

Presented at the German Institute of Aeronautics

and Astronautics , Aachen, Germany, on June 30, 1964.

ON LINEARIZED SUB- AND SUPERSONIC FLOW
AROUND PULSATING AND OSCILLATING BODIES

By

Maximilian F. Platzer

Presented in partial fulfillment for Ph.D. at Vi-

enna Institute of Technology, Vienna, Austria, in

February t964.

AMPLITUDE DEPENDENT STATIC HYSTEBESIS

DAMPING AS A MODEL FOR EARTH MATERIALS

By

Richard D. Rechtien

A general theory is presented for the description
of the propagational characteristics of seismic wave-

lets in earth materials. From the general development

of the theory, it is shown that no.linear theory can
ever predict the observed wavelet characteristics.

However, the inclusion of a near-arbitrary, high fre-

quency dissipation function in the wave equation per-

mits a linear theory to be applicable at arbitrarily low

frequencies.

The dissipation mechanism assumed operative in

the seismic range is taken to be linearly dependent on

the induced strain amplitude. This model essentially

describes the irrecoverable plastic deformation due

to local, high intensity stress at crystal boundaries.

A comparison of theoretical and experimental wavelet
behaviors is given, and the effects of nonlinearities

are discussed.

Presented in partial fulfillment for Ph.D. at

Washington University, St. Louis, Missouri, on June

i2, i964.

A SEMIEMPIRICAL DETERMINATION OF ALPHA

PARTICLE ENERGIES AND HALF-LIVES IN THE

HEAVY E LE ME NT RE GION

By

Barton Scott Perrine II

The parameters for a mass formula were deter-

mined by empirical methods for the region of nuclides

with N > i26 and Z > 82. By using this newly deter-
mined mass formula, alpha particle energies were

predicted for this region. With these alpha particle

energies the half-lives were found using a modifica-

tion of a relation developed by Bethe between half-life

and alpha decay energy.

The parameters associated with the liquid drop

model were not changed significantly from previous

values. However, the parameters for the correction
terms were changed enough to yield somewhat better

predictions for alpha particle energies than the older
parameters. The root-mean-square error for the

alpha particle energies was less than . 2Mev. The

errors in the predictions for the half-lives were quite
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largebut theseresults shouldstill beusefulindeter-
miningthe methodsto usein lookingfor alphadecay
in this region.

Presentedinpartial fulfillmentfor M.S. at Okla-
homaStateUniversity, Stillwater,Oklahoma,onMay
24, t964.

WALLPRESSUREFLUCTUATIONSANDSKINVI-
BRATIONSWITHEMPHASISONFREESHEAR

LAYERSANDOSCILLATINGSHOCKS

By

Fritz R. Krause

tracking system. The error buildups are based' on

actual SA-5 final tracking data. The results of a

Fourier analysis on MISTRAM velocity data are also

presented.

Presented at the MISTRAM Technical Working

Group Meeting, Cocoa Beach, Florida, on April 30,

t964.

A SURVEY OF METHODS FOR GENERATING

LIAPUNOV FUNCTIONS

By

C. C. Dearman and A. R. Lemay

$

Ever since the failure of the first Centaur flights,

high frequency skin vibrations have been of much con-

cern. Large wall pressure fluctuations below _epa-
rated flows and oscillating shocks lead to a dangerous
resonance excitation over the entire transonic and

supersonic portion of the flight. A new relation be-

tween pressure and force correlations has been es-
tablished for inhomogeneous turbulence in order to

account correctly for the largest pressure fluctuations
below oscillating separation and reattachment lines.

It shows that the power spectra of the generalized

forces canbe found from rigid model tests by a curve

fit of a special pressure cross correlation function.

However, a curve fit of experimental pressure cor-

relations is useful only as long as the statistical error
of a cross correlation estimate is smaller than the

numerical error of the curve fitting procedure. Non-

linear transfer functions and dynamic shifts in pres-

ently available pressure transducers and tape record-
ers are so large that the more refined force estimates,

which consider the spatial structure of the pressure

field, might lead to ambiguous results.

Presented at the Sixty-Seventh Meeting "of the

Acoustical Society of America, New York, New York,

May 6-9, 1964.

PERFORMANCE OF THE MISTRAM TRACKING

SYSTEM AT ELEVATION ANGLES LESS THAN

FOURTEEN DEGREES

By

Max A. Horst

Presented in this paper is the cyclic and random

error buildup at low elevation angles for the MISTRAM

The principal difficulty encountered in applying

Liapunov's second method to determine the stability

properties of nonlinear dynamical systems lies in

generating suitable Liapunov's functions. An exten-

sive study of the several methods of generating these
functions has been made and from these methods the

most promising for use in investigating the stability

properties of the differential equations of motion of a

guided space vehicle have been selected. The deriva-
tion of the methods in this sub-class and the differen-

tial equations to which they are applicable is the sub-

ject of this survey.

Presented at the Conference on Mathematical

Methods of Celestial Mechanics and Astronautics and

Related Questions of Numerical Mathematics, Ober-

wolfach-Walke, Germany, March t5-2t, t964.

VARIABLE POROSITY WALI_S FOP TRANSONIC

WIND TUNNELS

By

A. Richard Felix and J. W. Davis

Recently, variable porosity walls were installed
in the transonic test section of the t4 x i4 Inch Tri-

sonic Tunnel at Marshall Space Flight Center. Eval-
uation tests indicated that use of these walls greatly

improve the ability of this facility to procluce reason-

ably accurate model pressure distribution data

throughout the critical and difficult Mach number

range from t. 0 to i. 25. The evaluation was accom-

plished by comparing pressure distributions for a 20

degree cone-cylinder model with interference free
data for the samemodel. The range of porosities uti-

lized is between 0.5 percent and 5.4 percent with the

holes being 60 degrees slanted.

138



PresentedattheTwenty-FirstSemi-AnnualMeet-
ing of the SupersonicTunnelAssociation,Princeton,
NewJersey, in April t964.

Presented at the First Annual Meeting and Tech-

nical Display (AIAA), Washington, D. C., June28-
July 2, 1964.

APOLLO LOGISTIC SUPPORT SYSTEM

By

Herbert Schaefer and Leonard S. Yarbrough

One possible conceptual definition of an early
Apollo Logistics Support System (ALSS) is presented

and various payloads for the System are briefly dis-

cussed, A more detailed discussion of one payload, a
Lunar Mobile Laboratory {MOLAB), is given, includ-

ing a summary discussion of the major sub-systems
and critical features. Some of the considerations for

planning a lunar scientific mission are discussed. A

hypothetical traverse and general operations plan for
the MOLAB are defined in a manner suitable for mis-

sion optimization, once valid design data becomes

available. Some aspects of the MOLAB testing pro-
gram are presented, It is concluded that this system

appears feasible and the problems which presently

confront its design and development do not seem in-
surmountable.

The ideas expressed herein are those of the au-

thors and should not be construed as being official

NASA policy.

Presented at the Tenth Annual Meeting of the

American Astronautical Society on May 7, 1964.

SATURN I FLIGHT TEST EVALUATION

By

Dr. F. A. Speer

Presented in this paper is, in very condensed
form, a representative cross section of the major

Saturn I flight test achievements. The Saturn I flight

test program discussed includes the first five flights,

launched between October t96i, and "January 1964.

The overallSaturn I test program is discussed briefly

along with the resources available for flight testing.

The report also contains many illustrations which

are indicative of the type of information which is being

compiled and utilized, from the rough estimate of 550

million bits of information received from these flights,

in designing and building the two major NASA launch
vehicles of the future: the Saturn IB and the Saturn V.

SIMULATION OF THE SATURN V VEHICLE ON THE

E LECTRONIC ANALOG COMPUTER

By

Dieter Teuber

The development of large space vehicles of the

Saturn V type presents numerous problems not en-
countered inthe development of smaller missiles. The

increase of dynamic analysis efforts is apparent if the
effect of atmospheric disturbances on a nonlinear con-

trolled space vehicle is studied. Because of the un-

certainty in predicting the nature of atmospheric dis-
turbances, statistical methods are used. The GPS

high speed repetitive analog computer is suited for the
task to evaluate thousands of solutions for the overall

system performance of the Saturn V.

The systems of differential equations describing

the behavior of the Saturn V are represented. With

the addition of bending and sloshing modes, the prob-

lem is represented on the analog computer by a i2-
degrees-of-freedom simulation. Driving function of

this set of equations is wind magnitude as function of

the flight time. A reel-to-reel tape recorder is used

for measured wind profiles. In a different approach,

the statistical driving function is generated from a

noise generator and shaping filters based on the spec-
tral characteristics and amplitude distribution of wind.

Exceedances of maximum values for the bending mo-

ment, engine deflection or angle of attack are regis-
tered by the analog computer. Thus, an optimization

by changing control parameters becomes feasible.

Methods of programming the analog computer and

typical transients during powered flight of the Saturn

V are represented.

Presented at the Hermann Oberth Society, Darm-

stadt, Germany, on June 24, 1964.

FAR-FIELD SOUND PROPAGATION AS RELATED

TO SPACE VEHICLE STATIC FIRINGS

By

Orvel E. Smith

As space vehicle boosters become larger in

thrust, the emitted sound _nergy that is propagated
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throughthe atmospherebecomesof greaterconcern
to theorganizationsperformingthestaticfirings due
to disturbanceor nuisanceto the near-bycommuni-
ties. Far-field soundintensitylevelsarecalculated
usingthe inversesquarelaw andtheoreticalmodel
basedontheacousticalequivalenceto Snell'srefrac-
tion law. Thetheoreticalmodelrequiresaknowledge
of thesoundsourceintensityandthevelocityof sound
profile. Thismodelrequiresaccuratemeasurements
of thevertical structureof virtual temperature,wind
speedand directionfrom whichthevelocityof sound
profile is derived.Thenecessarysimplifyingassump-
tions usedin deriving thetheoreticalmodelwill be
discussed.Thesoundintensitylevelasderivedfrom
the theoreticalmodel andempirical measurements
from an acousticalhorn andthestaticfirings ofthe
Saturnboosterarecompared.Practicaloperational
techniquesusedin performingatmosphericmeasure-
ments,atmosphericpredictions,and soundintensity
levelcalculationsfor thestaticfiring of largeboost-
ers are discussed.

Presentedat theFifth AMS Conference on Applied

Meteorology - Atmospheric Problems of Aerospace

Vehicles, Atlantic City, New Jersey, March 2-6, 1964.

AN EVALUATION OF VARIOUS GEOMAGNETIC

FIE LD EQUATIONS

By

Harold C. Euler

In order to determine the "" ' 'driving and _controlTing

mechanisms which predominate in the ionosphere, a

series of contour maps was drawn from IGY data

taken at stations lying approximately alongthe seventy-

fifth meridian. An attempt was then made to inter-

pret the anomalous behavior of the F 2 peak of the

ionosphere in the vicinity of the geomagnetic equator.
If one assumes the existence of an equatorial electro-

jet and further assumes that the magnetic field which
is associated with this electrojet is sufficient to per-

turb the earth's main magnetic field, electrons may

be deflected away from the geomagnetic equator.
Furthermore, if the atmosphere tends to expand and

contract diurnally, ions and electrons may be deflected

into regions at times which could account for the noc-
turnal increase in electron density north and south of

the geomagnetic equator. Special emphasis is placed

upon this nocturnal increase in electron density, and

when its seasonal variation is investigated one finds

that the phenomenon is greatest during and around the

months of equinox and least so during and around the

months of solstice.

Presented at the National Annual Meeting of the

American Geophysical Union, Washington, D. C.,

April 22-25, 1964.

SPHERICAL BALLOON WIND SENSOR BEHAVIOR

By

James R. Scoggins

The dipole and multipole approximations of the

earth's main magnetic fieldare evaluated using Jensen

and Whitaker's 568 Gaussian coefficientsfor Epoch

1955.0. The totalgeomagnetic field,which was com-

puted to 16 earth radii for various geographic loca-

tions, is compared to values computed with the in-
verse cube law and to some of the Vanguard III

geomagnetic fieldobservations.

Presented at the National Annual Meeting of the

American Geophysical Union, Washington, D. C.,

April 22-25, t964.

PROPOSED SOLUTION TO THE GEOMAGNETIC

ANOMALIES IN THE IONOSPHERE

By

William T. Roberts

An analysis is presented which shows the response

characteristics of freely rising superpressure spheres

of different configurations. Wind profile data m eas-

ured by the superpressure balloon method, the smoke

trail method, the AN/GMD-1 rawinsonde system, and

from low level open air tests were used in the anal-

ysis. Results are reported on data measured at
Huntsville, Alabama, at night during stable conditions

to an altitude of t20 m and at Cape Kennedy toan alti-

tude of 12 kin. The results show that (i) the average

drag curve for a freely rising 2-m diameter, smooth

superpressure sphere differs considerably from the

drag curve obtained in wind tunnels using smaller

spheres; the average value of the drag coefficient is

larger over all Reynolds numbers except near the

transition region; (2) the drag coefficient for rough-

ened spheres is nearly independent of the Reynolds

number but decreases slightly as the Reynolds number

decreases; (3)by the addition of surface roughness
elements the aerodynamically induced horizontal
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motions of the smobt'h Si_ere are reduced; and (4} the
average aerodynamic lift force, which acts primarily
in the horizontal direction and is responsible for the

aerodynamically induced horizontal motions, is neg-
ligible indicating that it does not act in any preferred

direction.

Presented at the Fifth AMS Conference on Applied
Meteorology - Atmospheric Problems of Aerospace

Vehicles, Atlantic City, New Jersey, March 2-6, 1964.
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